Tracking copper, chlorine, and occupancy in a multi-story, new, institutional green building

Rain Richard^{a,b}, Kerry A. Hamilton^{a,c}, Paul Westerhoff^a, Treavor H. Boyer^{a,b*}

^aSchool of Sustainable Engineering and the Built Environment (SSEBE)

^bBiodesign Swette Center for Environmental Biotechnology

^cBiodesign Institute Center for Environmental Health Engineering

Arizona State University PO Box 873005, Tempe, AZ 85287-3005, USA

> *Corresponding author Tel.: 1-480-965-7447 E-mail addresses: <u>thboyer@asu.edu</u>

SUPPLEMENTAL MATERIALS

17 pages

19 tables

9 figures

Tables S1a-f: Brief summary highlighting important aspects of City of Tempe Consumer Confidence Report (CCR) adapted for this research.

					Violation	
Substance	Unit	MCL	MCLG	Range	(Yes or No)	Major Sources
Arsenic*	nnh	10	0	1.6-62	No	major sources
Darium		10 2	ייי <u>ס</u> ז	0.042 0.11	No	Erosion of natural deposits.
Chlorine	ppm	4 (MRDL)	4 (MRDLG)	0.06 ^a - 1.29	No	Disinfectant added to control microbial contaminants.
Chromium (Total)	ppb	100	100	ND - 12	No	Erosion of natural deposits.
Fluoride	ррт	4	4	0.12 - 0.53	No	Erosion of natural deposits; water additive which promotes strong teeth.
Gross Alpha	pCi/L	15	0	3.1 - 8.7	No	Erosion of natural deposits.
Nitrate	ppm	10	10	0.68 - 8.8	No	Runoff from fertilizer use.
Selenium	ppb	50	50	ND - 2.1	No	Leaching of natural deposits; discharge from metal refineries and mining.
Tetrachloroethylene	ppb	5	0	ND - 0.93	No	Discharge from factories and dry cleaners.
Total Organic Carbon	ppm	TT	N/A	0.7 - 3.5	No	Naturally present in the environment.
Trichloroethylene	ppb	5	0	ND - 0.66	No	Discharge from factories and dry cleaners.
Uranium	ppb	30	0	0.90 - 5.6	No	Erosion of natural deposits.

Table S1a

* Range includes calculated running annual averages.
^a The chlorine range near BDC never fell below 0.35 mg/L based on sample sites used by the City of Tempe.

Table S1b				
				Lowest monthly %
			Highest	meeting
Substance	Unit	MCL	Value	limit
	NTU	TT = 1 and		

Table S1b						
Substance	Unit	MCL	Highest Value	Lowest monthly % meeting limit	Violation (Ves or No)	Major Sources
Substance	NTU	TT = 1 and	value	mmu		Major Sources

Table S1c

			Highest Locational Running Annual	Range (single	Violation (Yes or	
Substance	Unit	MCL	Average	sample)	No)	Major Sources
Total		Running				
Trihalomethanes		Annual				
(TTHM)	ppb	Average of 80	76	16 - 110	No	By-products of drinking
Total Haloacetic		Running				water chlorination.
acids		Annual				
(HAA)	ppb	Average of 60	17	4.6 - 22	No	

Table S1d

Total Organic Carbon

				# of results			
Substance	Unit	Action Level	90th Percentile Result	above action level	Violation (Yes or No)	Maj	or sources
Copper (2018)	ppm	1.3	0.25	1	No	Corrosio plumb	n of household ing systems.
Lead (2018)	ppb	15	12	3	No	Corrosio plumb	n of household ing systems.
Table S1e							
Substa	nce	Un	its	MRL		Average	Range
Total Organic Carb	oon	pp	b	NA		2950	1100 - 4400

ppb

Ta	ble	S 1	f
		~ -	

Carl at an an	TT *4	Average	Range of
Substance	Units	Value	Values
Alkalinity	ppm	155	100-360
Aluminum	ppm	0.121	ND - 0.25
Boron	ppm	0.15	0.12 - 0.59
Bromide	ppm	< 0.05	ND - 0.23
Calcium	ppm	57	46 - 110
Chloride	ppm	268	94 - 430
Conductivity	µmhos/cm@25°C	1339	784 - 2260
Hardness	ppm	238	203 - 485
Hardness	grains /gallon	13.9	11.8 - 28.4
Hexavalent chromium (2017)	ppb	< 10.0	ND
Iron	ppm	< 0.05	ND - 10.1
Magnesium	ppm	23	18 - 52
Manganese	ppm	< 0.001	ND - 0.025
Nickel	ppb	<5.0	ND
pH	S.U.	6.8	6 - 7.6
Potassium	ppm	5.3	3.4 - 6.5
Radon (2008)	pCi/L	346	ND - 688
Silica	ppm	13	8.1 - 33.9
Silver	ppb	< 0.25	ND
Sodium	ppm	184	72.6 - 343
Sulfate	ppm	102	53 - 200
Temperature	°F	76	62 - 86
Total Dissolved Solids	ppm	773	400 - 1400
Zinc	ppm	< 0.02	ND - 0.039

 Table S2:
 Occupancy move-in count and summed daily occupancy count over duration of study

	Occupancy move-in	Summed occupancy
	count (May – Aug	count
Floor	2018)	for study duration
1	0	31,648
2	25	7063
3	36	12024
4	17	5202
5	12	4103

Table S3: Nonparametric Steel-Dwass on daily occupancy by floor where floor is denoted by BDC (Biodesign C) and floor number

-	p-Value
Level	
BDC2	0.0005*
BDC2	0.9442
BDC2	0.1738
BDC4	0.0070*
BDC3	0.0006*
BDC3	<.0001*
BDC1	<.0001*
	- BDC2 BDC2 BDC2 BDC4 BDC3 BDC3 BDC1 BDC1 BDC1 BDC1

Table S4: Spearman's ρ correlations between copper (Cu), Domestic Cold Water (DCW)^a and occupancy^b by floor denoted as the floor number and -B for breakroom. Cu draws were every Monday and Thursday for the duration of the study May 2018 – October 2018. DCW was measured starting 7/31/2018.

Floor	First Dı Sı	raw Cu Concentra bearman's ρ Occu	ations Nonpa pancy and D	arametric: CW	Second D Sp	raw Cu Concentra earman's ρ Occup	tions Nonpa ancy and DC	rametric: CW
	Variable	by Variable	Spearman ρ	Prob> p	Variable	by Variable	Spearman ρ	Prob> p
1-B	Occupancy	First draw Cu Concentration	-0.6608	<.0001*	Occupancy	Second draw Cu Concentration	-0.6886	<.0001*
	DCW	First draw Cu Concentration	-0.7106	0.0001*	DCW	Second draw Cu Concentration	-0.7971	<.0001*
	DCW	Occupancy	0.5840	0.0034*	DCW	Occupancy	0.5840	0.0034*
	Variable	by Variable	Spearman p	Prob> p	Variable	by Variable	Spearman p	Prob> p
2-В	Occupancy	First draw Cu Concentration	-0.4698	0.0017*	Occupancy	Second draw Cu Concentration	-0.5970	<.0001*
	DCW	First draw Cu Concentration	-0.7038	0.0002*	DCW	Second draw Cu Concentration	-0.7161	0.0001*
	DCW	Occupancy	0.6225	0.0015*	DCW	Occupancy	0.6225	0.0015*
	Variable	by Variable	Spearman ρ	Prob> p	Variable	by Variable	Spearman ρ	Prob> p
3-В	Occupancy	First draw Cu Concentration	-0.5587	0.0001*	Occupancy	Second draw Cu Concentration	-0.6217	<.0001*
	DCW	First draw Cu Concentration	-0.7204	0.0001*	DCW	Second draw Cu Concentration	-0.7395	<.0001*
	DCW	Occupancy	0.5870	0.0032*	DCW	Occupancy	0.5870	0.0032*
	Variable	by Variable	Spearman ρ	Prob> p	Variable	by Variable	Spearman ρ	Prob> p
4 - B	Occupancy	First draw Cu Concentration	-0.7168	<.0001*	Occupancy	Second draw Cu Concentration	-0.7316	<.0001*
	DCW	First draw Cu Concentration	-0.7210	0.0001*	DCW	Second draw Cu Concentration	-0.7461	<.0001*
	DCW	Occupancy	0.7201	0.0001*	DCW	Occupancy	0.7201	0.0001*
	Variable	by Variable	Spearman ρ	Prob> p	Variable	by Variable	Spearman ρ	Prob> p
5-B	Occupancy	First draw Cu Concentration	-0.5426	0.0002*	Occupancy	Second draw Cu Concentration	-0.5752	<.0001*
	DCW	First draw Cu Concentration	-0.7500	<.0001*	DCW	Second draw Cu Concentration	-0.7682	<.0001*
	DCW	Occupancy	0.6660	0.0005*	DCW	Occupancy	0.6660	0.0005*

a = DCW is volumetric daily gallons for day prior (Gallons Per Day GPD), b = Occupancy is the day prior sums (Count Per Day CPD),

Table S5: Wilcoxon signed rank test first draw Cu concentration versus second draw Cu concentration for duration of study (May 2018 – October 2018 every Monday and Thursday) where B represents the breakroom.

Floor	First draw vs second draw Cu			Wilcoxon-signed	l rank
	Second draw Cu Concentration	0.52253 t-Ratio	-5.2952		
	First draw Cu Concentration	0.6259 DF	39	Test Statistic S	-331.00
	Mean Difference	-0.1034 Prob > t	<.0001*	Prob> S	<.0001*
1 D	Std Error	0.01952 Prob > t	1.0000	Prob>S	1.0000
1-В	Upper 95%	-0.0639 Prob < t	<.0001*	Prob <s< td=""><td><.0001*</td></s<>	<.0001*
	Lower 95%	-0.1429			
	Ν	40			
	Correlation	0.87755			
	Second draw Cu Concentration	0.59543 t-Ratio	-2.06159		
	First draw Cu Concentration	0.65043 DF	39	Test Statistic S	-231.50
	Mean Difference	-0.055 Prob > t	0.0460*	Prob> S	0.0011*
1 D	Std Error	0.02668 Prob > t	0.9770	Prob>S	0.9995
2 - D	Upper 95%	-0.001 Prob < t	0.0230*	Prob <s< td=""><td>0.0005*</td></s<>	0.0005*
	Lower 95%	-0.109			
	Ν	40			
	Correlation	0.85442			
	Second draw Cu Concentration	0.57671 t-Ratio	-3.95369		
	First draw Cu Concentration	0.64505 DF	40	Test Statistic S	-379.50
	Mean Difference	-0.0683 Prob > t	0.0003*	Prob> S	<.0001*
2 D	Std Error	0.01729 Prob > t	0.9998	Prob>S	1.0000
5-В	Upper 95%	-0.0334 Prob < t	0.0002*	Prob <s< td=""><td><.0001*</td></s<>	<.0001*
	Lower 95%	-0.1033			
	Ν	41			
	Correlation	0.92515			
	Second draw Cu Concentration	0.61195 t-Ratio	-2.72563		
	First draw Cu Concentration	0.68149 DF	40	Test Statistic S	-318.50
	Mean Difference	-0.0695 Prob > t	0.0095*	Prob> S	<.0001*
1 D	Std Error	0.02551 Prob > t	0.9953	Prob>S	1.0000
4- D	Upper 95%	-0.018 Prob < t	0.0047*	Prob <s< td=""><td><.0001*</td></s<>	<.0001*
	Lower 95%	-0.1211			
	Ν	41			
	Correlation	0.83559			
	Second draw Cu Concentration	0.63461 t-Ratio	-3.73162		
	First draw Cu Concentration	0.68768 DF	40	Test Statistic S	-321.00
	Mean Difference	-0.0531 Prob > t	0.0006*	Prob> S	<.0001*
5 D	Std Error	0.01422 Prob > t	0.9997	Prob>S	1.0000
5-Б	Upper 95%	-0.0243 Prob < t	0.0003*	Prob <s< td=""><td><.0001*</td></s<>	<.0001*
	Lower 95%	-0.0818			
	N	41			
	Correlation	0.96125			

Table S6: One-way ANOVA for first and second draw Cu concentrations by floor for duration of study (May 2018 – October 2018)

	First Draw Cu Concentrations Second Draw Cu Concentration					ations					
Analysis of Variance					Analysis of	f Variar	nce				
Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F	Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Floor	4	0.071604	0.017901	0.2051	0.9354	Floor	4	0.291447	0.072862	1.2382	0.2960
Error	204	17.803873	0.087274			Error	198	11.651246	0.058845		
C. Total	208	17.875477				C. Total	202	11.942693			

Tests that the Variances are Equal

Tests that the Variances are Equal

Test	F Ratio	DFNum	DFDen	Prob > F	Test	F Ratio	DFNum	DFDen	Prob > F
O'Brien[.5]	0.5743	4	204	0.6816	O'Brien[.5]	1.4852	4	198	0.2081
Brown-Forsythe	0.1625	4	204	0.9571	Brown-Forsythe	0.8337	4	198	0.5052
Levene	0.1596	4	204	0.9585	Levene	0.8511	4	198	0.4944
Bartlett	0.9496	4		0.4340	Bartlett	1.9979	4		0.0919

Table S7: First draw Cu summary statistics for Summer and Fall denoted by floor and B for breakroom

Summer (May – July)									
1-B 2-B		3-B	4-B	5-B					
Quantiles	Quantiles	Quantiles	<u>Quantiles</u>	Quantiles					
max 1.154	max 1.639	max 1.271	max 1.722	max 1.662					
Q3 0.95725	Q3 1.142	Q3 1.097	Q3 0.937	Q3 1.089					
med 0.799	med 0.718	med 0.782	med 0.786	med 0.797					
Q1 0.657	Q1 0.672	Q1 0.611	Q1 0.706	Q1 0.702					
min 0.471	min 0.244	min 0.558	min 0.532	min 0.482					
	Fall (August – Octoł	per)						
1 - B	2-B	3-B	4-B	5-B					
<u>Quantiles</u>	Quantiles	Quantiles	<u>Quantiles</u>	<u>Quantiles</u>					
max 0.881	max 0.888	max 0.911	max 0.953	max 0.881					
Q3 0.71	Q3 0.687	Q3 0.608	Q3 0.653	Q3 0.581					
med 0.429	med 0.524	med 0.452	med 0.482	med 0.471					
Q1 0.335	Q1 0.331	Q1 0.335	Q1 0.361	Q1 0.35					
min 0.202	min 0.285	min 0.263	min 0.266	min 0.266					

TEMPERATURE								pН		
Date	1-B-1	2-B-1	3-B-1	4-B-1	5-B-1	1-B-1	2-B-1	3-B-1	4-B-1	5-B-1
5/24/2018		23	22.7	22.7	22.4		7.63	7.72	7.61	7.76
5/29/2018	23.2	23.5	24.4	21.2	21.7	7.4	7.4	7.6	7.5	7.5
6/1/2018	24.4	24.1	24.1	24.3	24	7.5	7.4	7.5	7.6	7.5
6/4/2018	22.7	22.7	23.8	22.8	22.5	7.5	7.5	7.5	7.5	7.5
6/7/2018	22.6	22	22.6	20	22.6	7.4	7.5	7.4	7.5	7.4
6/11/2018	21.7	22.2	21.6	23	23.6	7.4	7.4	7.5	7.5	7.5
6/14/2018	22.6	22	24.9	22.6	25.4	7.5	7.4	7.4	7.4	7.4
6/18/2018	21.5	20.8	22	24	23	7.4	7.5	7.6	7.6	7.6
6/21/2018	23	22.7	24	23.8	23	7.6	7.6	7.7	7.7	7.7
6/25/2018	23.7	23	26	23	22.4	7.5	7.5	7.6	7.5	7.6
6/28/2018	24.1	23	23.7	25.4	25	7.5	7.5	7.5	7.5	7.5
7/1/2018	23	24.1	25.3	25.3	25.4	7.5	7.5	7.5	7.6	7.5
7/9/2018	23.7	23	27.4	24.7	24.8	7.5	7.6	7.7	7.6	7.8
7/12/2018	23.3	23.6	25	19.8	25	7.9	7.7	7.8	7.8	7.9
7/16/2018	22.6	23	21.5	23	23.2	7.8	7.8	7.8	7.9	7.9
7/19/2018	22.6	22.4	22.8	22.2	20.6	7.7	7.5	7.5	7.5	7.5
7/23/2018	22.6	22.6	25.6	22.4	25.5	7.8	7.8	7.7	7.6	7.7
7/26/2018	22	23	24	23	21.8	7.6	7.7	7.7	7.7	7.7
7/30/2018	22.4	22.9	23.7	21	24.5	7.6	7.7	7.7	7.6	7.7
8/2/2018	22.1	24.3	26.2	20.9	22	7.6	7.6	7.6	7.6	7.7
8/6/2018	22.4	23.3	24.4	23.2	22.9	7.5	7.6	7.6	7.6	7.6
8/9/2018	22.1	21.6	21.7	22.9	22.9	7.7	7.8	7.8	7.8	7.8
8/13/2018	24.6	23.8	24.7	23.7	24.4	7.8	7.8	7.8	7.8	7.8
8/16/2018	22	22	26	21.4	25.4	8	8	8	8	8
8/20/2018	23.2	22.2	24.5	24.4	22	8.1	8.1	8.1	8.1	8.1
8/23/2018	22.6	22	25.7	22.7	22.5	8.1	8.1	8.1	8.1	8.1
8/27/2018	23	22.4	26	23.9	24.3	8.1	8.1	8.1	8.1	8.1
8/30/2018	23.7	22.4	24.9	23	22.7	8.1	8	8.1	8.1	8.1
9/6/2018	22.5	23.6	23.6	23	22.5	7.9	7.9	7.9	7.9	7.9
9/10/2018	23.6	22.4	25.4	23.3	23.5	8	8	8	8	8
9/13/2018	23.7	22.7	26	23	23.1	8	7.9	8	8	8
9/20/2018	24	22.1	24	22.7	22.5	8.1	8.1	8.1	8.1	8.1
9/24/2018	23	22.5	25.7	24.7	23.1	8.2	8.2	8.3	8.3	8.3
9/27/2018	23.1	22.2	25.4	23	22.5	8.3	8.2	8.3	8.2	8.3
10/1/2018	23.4	22.2	25.8	22	22.3	8.3	8.3	8.3	8.3	8.3
10/4/2018	24	23	22.6	22.4	22.7	8.3	8.3	8.3	8.3	8.3
10/11/2018	22.6	23	22.7	20.9	22.3	8.2	8.2	8.2	8.2	8.2
10/15/2018	23	24.3	25.6	22.6	22.2	8.3	8.3	8.3	8.3	8.2
10/18/2018	22.6	23.6	24.2	22.6	22.5	8	8.1	8	8	8.1
10/22/2018	23	23.9	24.6	22.6	21.2					

Table S8a: Temperature and pH values for first draw samples where # represents the floor, B represents the breakroom and -1 represents first draw

TEMPERATURE (C)								pН		
Date	1-B-2	2-B-2	3-B-2	4-B-2	5-B-2	1-B-2	2-B-2	3-B-2	4-B-2	5-B-2
5/24/2018			23.4	23.6	23			7.89	7.75	7.72
5/29/2018	23.9	23	24.5	21.7	22.8	7.5	7.5	7.5	7.5	7.5
6/1/2018	25	24	25	25.6	24.4	7.6	7.6	7.5	7.5	7.5
6/4/2018	24.6	22	25	24.2	22.7	7.6	7.6	7.5	7.5	7.5
6/7/2018	24.4	21.4	21.7	21.7	23.2	7.5	7.5	7.4	7.5	7.4
6/11/2018	25.4	24	23	24.7	24.7	7.5	7.5	7.5	7.5	7.5
6/14/2018	25.4	25.6	25.2	24.6	25.4	7.5	7.4	7.4	7.4	7.4
6/18/2018	25.1	24	23.6	25	25.4	7.7	7.7	7.6	7.7	7.6
6/21/2018	24.4	25.9	25.5	25.5	25.6	7.7	7.7	7.6	7.7	7.6
6/25/2018	27	25.6	27	25.6	25	7.6	7.6	7.5	7.6	7.6
6/28/2018	26.4	25.7	25	26.5	26.6	7.6	7.6	7.5	7.6	7.6
7/2/2018	26.4	28	27.4	27.1	27.6	7.5	7.6	7.5	7.5	7.5
7/9/2018	27.7	26	28.1	24.6	26.4	7.8	7.7	7.7	7.7	7.7
7/12/2018	26.4	26.7	26	22.7	25	7.9	7.9	7.9	7.9	7.9
7/16/2018	27	26.6	22.4	26.2	25.4	7.9	7.9	7.8	7.9	7.9
7/19/2018	26.6	25.6	25.7	24	24.3	7.5	7.5	7.4	7.5	7.5
7/23/2018	26	25.3	26	22.7	25	7.7	7.7	7.7	7.7	7.7
7/26/2018	24	25	25.6	23.5	23.8	7.7	7.8	7.7	7.7	7.7
7/30/2018	25.2	25.4	26	23.8	25	7.7	7.7	7.7	7.7	7.7
8/2/2018	25	26.7	26	23.4	24.6	7.7	7.7	7.6	7.7	7.7
8/6/2018	26	26.4	25.8	25.6	25.4	7.6	7.6	7.6	7.6	7.6
8/9/2018	26	23.4	24	24.9	25.4	7.8	7.8	7.8	7.8	7.8
8/13/2018	26.4	26.9	26.4	26.1	26.6	7.8	7.8	7.8	7.8	7.8
8/16/2018	27.4	24.4	26.6	24.6	26.4	8	8	8	8	8
8/20/2018	26.7	24	26.7	26	24.6	8.1	8.1	8.1	8.1	8.1
8/23/2018	26	23.6	26.1	25.6	25	8.1	8.1	8.1	8.1	8.1
8/27/2018	26	24	27.3	26.3	26.1	8	8.1	8	8	8.1
8/30/2018	26.8	24	25.9	24.4	24.1	8.1	8.1	8.1	8.1	8.1
9/6/2018	26	25.7	24.5	23.7	24	8	8	8	8	8
9/10/2018	27	23.7	26.3	24.1	25.3	8.1	8.1	8.1	8.1	8.1
9/13/2018	26	24	27.3	24.1	24.6	8	8	8	8	8
9/20/2018	26.5	23	25	23.6	24.5	8.2	8.1	8.1	8.1	8.1
9/24/2018	25.4	24.2	25.6	24	25	8.3	8.3	8.3	8.3	8.3
9/27/2018	26.4	23.2	26	24	25	8.3	8.3	8.2	8.3	8.2
10/1/2018	25.9	23.7	25.8	24	24.2	8.3	8.3	8.3	8.3	8.3
10/4/2018	26.4	22.9	24	24	24.5	8.4	8.3	8.3	8.3	8.3
10/11/2018	25.4	23	24	23.4	24.1	8.3	8.2	8.2	8.2	8.2
10/15/2018	26.4	26	25.7	25.5	24.4	8.3	8.3	8.3	8.3	8.3
10/18/2018	24.6	23.6	24	24	24	8.1	8.1	8.1	8.1	8.1
10/22/2018	26	25.5	25.1	24.7	25.1					

Table S8b: Temperature and pH values for second draw samples where # represents the floor, B represents the breakroom and -2 represent ssecond draw

Table S9. Nonparametric Steel-Dwass for first draw temperature where floor is donated as the first number, B is for breakroom, and -1 represents the first draw

Level	- Level	p-Value
3-B-1	2-B-1	<.0001*
3-B-1	1-B-1	<.0001*
5-B-1	2-B-1	0.9317
4-B- 1	2-B-1	0.9816
5-B-1	4-B-1	0.9998
5-B-1	1-B-1	0.9997
4-B- 1	1-B-1	0.9990
2-B-1	1-B-1	0.8696
5-B-1	3-B-1	0.0009*
4-B- 1	3-B-1	0.0001*

Table S10. Nonparametric Steel-Dwass for second draw temperature where floor is donated as the first number, B represents breakroom and -2 represents the second draw.

Level	- Level	p-Value
3-B-2	2-B-2	0.1393
5-B-2	4-B-2	0.3550
5-B-2	2-B-2	0.9521
4-B-2	2-B-2	0.9873
3-B-2	1-B-2	0.2241
5-B-2	3-B-2	0.1589
4-B-2	3-B-2	0.0137*
2-B-2	1-B-2	0.0003*
5-B-2	1-B-2	<.0001*
4-B-2	1-B-2	<.0001*
2-B-2 5-B-2 4-B-2	1-B-2 1-B-2 1-B-2	0.0003* <.0001* <.0001*

Table S11: Wilcoxon signed rank test first draw temperature versus second draw temperature for duration of study (May 2018 – October 2018 every Monday and Thursday) where B represents the breakroom

Floor	First draw vs second draw Tempe	Wilcoxon-signed	Wilcoxon-signed rank		
	Second Draw Temperature	25.9237 t-Ratio	22.35221		
	First Draw Temperature	22.9421 DF	37	Test Statistic S	370.500
	Mean Difference	2.98158 Prob >	> t <.0001*	Prob> S	<.0001*
1 D	Std Error	0.13339 Prob >	t <.0001*	Prob>S	<.0001*
1-В	Upper 95%	3.25185 Prob <	< t 1.0000	Prob <s< td=""><td>1.0000</td></s<>	1.0000
	Lower 95%	2.7113			
	Ν	38			
	Correlation	0.46552			
	Second Draw Temperature	24.6079 t-Ratio	9.205249		
	First Draw Temperature	22.8079 DF	37	Test Statistic S	350.500
	Mean Difference	1.8 Prob >	> t <.0001*	Prob> S	<.0001*
1 D	Std Error	0.19554 Prob >	t <.0001*	Prob>S	<.0001*
2-В	Upper 95%	2.1962 Prob <	< t 1.0000	Prob <s< td=""><td>1.0000</td></s<>	1.0000
	Lower 95%	1.4038			
	Ν	38			
	Correlation	0.49293			
	Second Draw Temperature	25.3282 t-Ratio	6.802398		
	First Draw Temperature	24.4205 DF	38	Test Statistic S	340.000
	Mean Difference	0.90769 Prob >	> t <.0001*	Prob> S	<.0001*
2 D	Std Error	0.13344 Prob >	t <.0001*	Prob>S	<.0001*
3-D	Upper 95%	1.17782 Prob <	< t 1.0000	Prob <s< td=""><td>1.0000</td></s<>	1.0000
	Lower 95%	0.63756			
	Ν	39			
	Correlation	0.83515			
	Second Draw Temperature	24.4359 t-Ratio	0 10.80841		
	First Draw Temperature	22.8 DF	38	Test Statistic S	383.500
	Mean Difference	1.6359 Prob >	> t <.0001*	Prob> S	<.0001*
1 D	Std Error	0.15135 Prob >	t <.0001*	Prob>S	<.0001*
4-D	Upper 95%	1.9423 Prob <	t 1.0000	Prob <s< td=""><td>1.0000</td></s<>	1.0000
	Lower 95%	1.3295			
	Ν	39			
	Correlation	0.66339			
	Second Draw Temperature	24.8385 t-Ratio	0 11.52948		
	First Draw Temperature	23.0667 DF	38	Test Statistic S	384.000
	Mean Difference	1.77179 Prob >	> t <.0001*	Prob> S	<.0001*
5 D	Std Error	0.15368 Prob >	t <.0001*	Prob>S	<.0001*
Э- D	Upper 95%	2.08289 Prob <	< t 1.0000	Prob <s< td=""><td>1.0000</td></s<>	1.0000
	Lower 95%	1.4607			
	Ν	39			
	Correlation	0.6351			

Date	1-B-1	2-B-1	3-B-1	4-B-1	5-B-1	1-B-2	2-B-2	3-B-2	4-B-2	5-B-2
5/24/2018		ND	0.02	0.02	0.04			ND	0.03	0.02
5/29/2018	ND	0.05	ND	ND	ND	ND	ND	0.02	ND	ND
6/1/2018	ND									
6/4/2018	ND									
6/7/2018	ND	0.02	ND							
6/11/2018	ND	ND	ND	ND	0.02	0.02	ND	0.02	0.02	0.02
6/14/2018	ND									
6/18/2018	ND	ND	0.02	ND	ND	ND	0.02	ND	ND	ND
6/21/2018	ND									
6/25/2018	ND									
6/28/2018	0.02	ND								
7/1/2018	ND									
7/9/2018	ND									
7/12/2018	ND									
7/16/2018	ND									
7/19/2018	ND									
7/23/2018	ND									
7/26/2018	ND									
7/30/2018	ND	ND	ND	0.02	ND	ND	ND	ND	ND	ND
8/2/2018	ND									
8/6/2018	ND									
8/9/2018	ND									
8/13/2018	ND									
8/16/2018	ND									
8/20/2018	ND	ND	ND	ND	ND	ND	0.02	ND	ND	ND
8/23/2018	ND									
8/27/2018	ND									
8/30/2018	ND									
9/6/2018	ND									
9/10/2018	ND									
9/13/2018	ND									
9/20/2018	ND									
9/24/2018	ND									
9/27/2018	ND									
10/1/2018	ND									
10/4/2018	ND									
10/11/2018	ND									
10/15/2018	ND									
10/18/2018	ND									

Table S12: Free chlorine values for first and second draw by floor. Floor and draw are denoted as: *floor* #-B-*draw* and B represents breakroom, ND is nondetect

Table S13: Spearman's ρ correlations between first draw copper (Cu), and occupancy^a by floor denoted as the floor number and -B for breakroom. Cu draws were every Monday and Thursday for the duration of the study May 2018 – October 2018. Fall was August – October. Summer was May – July.

Floor	Fall First	Draw Cu Concen Spearman's ρ	trations Nor Occupancy	parametric:	Summer First Draw Cu Concentrations Nonparametric: Spearman's ρ Occupancy				
1-B	Variable	by Variable	Spearman ρ	Prob> ρ	Variable	by Variable	Spearman ρ	Prob> p	
	Occupancy	First draw Cu Concentration	-0.4586	0.0277*	Occupancy	First draw Cu Concentration	-0.3347	0.1746	
2-В	Variable	by Variable	Spearman o	Prob> p	Variable	by Variable	Spearman o	Prob> p	
	Occupancy	First draw Cu Concentration	-0.5179	0.0114*	Occupancy	First draw Cu Concentration	0.2227	0.3594	
3-В	Variable	by Variable	Spearman p	Prob> p	Variable	by Variable	Spearman p	Prob> p	
	Occupancy	First draw Cu Concentration	-0.4269	0.0422*	Occupancy	First draw Cu Concentration	0.1777	0.4668	
4-B	Variable	by Variable	Spearman ρ	Prob> p	Variable	by Variable	Spearman ρ	Prob> p	
	Occupancy	First draw Cu Concentration	-0.6342	0.0012*	Occupancy	First draw Cu Concentration	-0.1824	0.4548	
5-B	Variable	by Variable	Spearman ρ	Prob> p	Variable	by Variable	Spearman ρ	Prob> p	
5.0	Occupancy	First draw Cu Concentration	-0.5418	0.0076*	Occupancy	First draw Cu Concentration	0.0045	0.9856	

a = Occupancy is the day prior sums (Count Per Day CPD),

Figure S1: Biodesign C plan view of floor layouts for $2^{nd} - 5^{th}$ floors. 2^{nd} floor is open to first floor while $3^{rd} - 5^{th}$ floors are all lab, office and neighborhood spaces.

Figure S2: Biodesign C overall plumbing diagram of basement. Water supply enters at column line four and travels throughout building. Major risers are at columns 6 and 13 to feed lab spaces and a riser which is not shown in the figure above feeds the restrooms and breakroom sinks. This riser is between columns 6-7 and is shown in Figure S4a.

Figure S3: Domestic waterflow diagram of Biodesign C shows the restrooms stacked on top of each other from one riser. The other risers feed the laboratories. Two drinking fountains are in an alcove between the men's and women's restroom. The single restroom labeled "toilet" is about 35 feet away from the men's, women's restroom and drinking fountain alcove.

Figure S4a and b: The restroom riser is in figure on the left (Figure S4a). The riser starts in the basement and stays tucked behind the water fountains. The figure on the right (Figure S4b) is plumbing for floors 1-5 shows the alcove for the drinking fountains and a 2" domestic cold water (DCW) line that runs down the hall to the breakroom sink.

Figure S5a,b,c: Highlighted areas show the single restroom, the water fountain alcoves between the women and men's restroom as well as the breakroom sink. The domestic water line leaves the water fountain alcove and splits in two directions, one to feed the single restroom and the other direction is to feed the single breakroom sink. The most left figure (Figure S5a) is the 1st floor. The approximate distance from the single restroom to the water fountains is 35 feet. This holds true for all five floors. The approximate distance from the breakroom sink to the water fountains is 30 feet. The middle figure (Figure S5b) is the 2nd floor. The approximate distance from the single restroom to the breakroom sink is approximately 70 feet. The figure on the right (Figure S5c) represents floors 3 -5. The approximate distance from the breakroom sink to the water fountain is approximately 65 feet. Breakrooms and restrooms are stacked on top of each other for all floors barring the slight change in breakroom sink location on the 1st and 2nd floor in relation to floors 3-5.

Figure S6: Linear regression of first and second draw Cu concentration vs pH. Only 1st floor is shown because all five floors behaved similarly.