Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Sonophotocatalysis mediated morphological transition modulates virulence and antibiotic resistance in *Salmonella* Typhimurium

A. P. Habeeb Rahman ^{a, b}, Ananyo Jyoti Misra ^{a, b}, Swagatika Panda ^c, Bhaskar Das ^d, Prachi Bhol ^a, Priti Sundar Mohanty ^{a, b}, Ashok J. Tamhankar ^{b, e}, Amrita Mishra ^b, Cecilia Stålsby Lundborg ^e, Suraj K. Tripathy ^{a, b}*

^a School of Chemical Technology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
 ^b School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
 ^c ICMR-Regional Medical Research Center, Bhubaneswar, India
 ^dDepartment of Biotechnology and Medical Engineering, National Institute of Technology, Raurkela, India
 ^eDepartment of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden

* Corresponding author: S. K. Tripathy (E-mail: suraj.tripathy@kiitbiotech.ac.in, Tel: +91-674-2725466)

Synthesis of Fe-ZnO NPs:

Supplementary Scheme. 1 Flowchart of Fe-ZnO NPs synthesis

Fig. S1. Efficacy of SPC disinfection against different mutants of *S. enterica*. STm- antibiotic resistant mutant, STm SPI- Salmonella pathogenicity island induced STm, SB300- virulent strain of wild type *S*. Typhimurium, STm GFP- Green fluorescence protein tagged mutant, SEH- Hydrogen peroxide resistant mutant of *S*. Enteritidis. (Bacterial loading $\approx 10^7$ CFU/mL, Fe-ZnO NPs loading = 200 mg/L, Temperature=35±2°C). Error bar indicates the standard deviation of replicates (n=3).

Fig. S2. Time dependant analysis of resazurin metabolic assay of STm sampled at different time points of SPC disinfection. Each reaction was performed in triplicate. (Bacterial loading $\approx 10^7$ CFU/mL, Fe-ZnO NPs loading = 200 mg/L, Temperature = 35±2°C).

Fig. S3. Average colony diameter of STm sampled at different time intervals of SPC disinfection. Diameter was measured after 7 and 14 days of incubation at 37°C. Inset represents the change in diameter of untreated STm. (Bacterial loading $\approx 10^7$ CFU/mL, Fe-ZnO NPs loading = 200 mg/L, Temperature = 35±2°C). Error bar indicates the standard deviation of replicates (n=3).

Fig. S4. (a) and (b) shows fluorescent images of GFP tagged untreated and treated (recovered after sublethal SPC - +45 min) STm captured during bacterial motion in the prepared slides, depicting the (a)absence and (b) presence of spheroplast like cells respectively.

Fig. S5. Invasion assay of untreated (UT) and treated (T) STm after sublethal SPC (sampled after +30 min of SPC) in HCT116 colon epithelial cells at MOI=10. Inset represents the difference in total invasion by UT and T STm. Error bar indicates the standard deviation of replicates (n=3).

Fig. S6. Invasion assay of untreated (UT) and SPC treated SPI induced (T) STm (sampled at +45 min of SPC) in HCT116 colon epithelial cells at MOI=10. Data represents the survived bacterial cells during invasion. Inset represents the difference in total invasion by SPI induced UT and T STm. Total invasion time = 50 min. Error bar indicates the standard deviation of replicates (n=3).

Fig. S7. ZOI of antibiotics clustered according to their target (membrane, protein and DNA) after 45min treatment of SPC 5.1 (Sonophotocatalysis 5th cycle), and 1st cycle of SPC (Sonophotocatalysis), SC (Sonocatalysis), PC (Photocatalysis), SPL (Sonophotolysis) compared with untreated STm. ZOI is measured excluding the diameter of antibiotic disc = 6mm.

Fig. S8. Antibiotic resistance/susceptibility profiling of STm recovered after SPC 5.2 (Sonophotocatalysis 5th cycle), and 1st cycle of SPC (Sonophotocatalysis), PC (Photocatalysis), SC (Sonocatalysis) compared with untreated STm.

Fig. S9. ZOI of antibiotics clustered according to their target (Membrane, Protein and DNA) of STm recovered after SPC 5.2 (Sonophotocatalysis 5th cycle), and 1st cycle of SPC (Sonophotocatalysis), PC (Photocatalysis), SC (Sonocatalysis) compared with untreated STm. ZOI is measured excluding the diameter of antibiotic disc = 6mm.

SI No	Fatty acid	Untreated	Sublethal SPC treated STm
1	12:0	3.85	3.85
2	11:0 3OH	0.43	0.37
3	13:0	0.32	0.29
4	14:0 iso	0.13	0.25
5	14:0	5.03	5.07
6	15:1 iso G	0.41	0.45
7	15:0 anteiso	3.27	2.86
8	15:1 w5c	0.62	0.30
9	14:0 2OH	0.77	0.67
10	16:0 N alcohol	0.48	0.32
11	16:0 iso	0.29	0.30
12	16:0 anteiso	0.35	0.33
13	16:1 w5c	0.14	0.19
14	16:0	24.34	24.13
15	15:0 2OH	0.66	0.57
16	17:1 anteiso A	0.61	0.77
17	17:0 anteiso	2.25	1.93
18	17:0 cyclo	6.38	6.29
19	17:0	0.97	1.01
20	18:3 w6c (6,9,12)	0.66	0.61
21	18:0	1.64	1.36
22	19:0 cyclo w8c	4.32	5.02
23	19:0	0.46	0.43
24	20:2 w6,9c	0.92	0.47
25	20:1 w7c	0.26	0

.

Table. S1. Change in fatty acid composition of sublethal SPC treated and untreated STm

SI No	Antibiotic	Class or Subgroup	Target site
1	Imipenem	B-lactam/ Carbapenem	Cell wall
2	Ceftriaxone	Lactams/cephalosporin	Cell wall
3	Cefuroxime	Lactams/cephalosporin	Cell wall
4	Doripenem	Lactams/Thienamycins	Cell wall
5	Meropenem	Lactams/Thienamycins	Cell wall
6	Ampicillin	Lactams/Penicillins	Cell wall
7	Ertapenem	Lactams/Thienamycins	Cell wall
8	Aztreonam	Lactams/Monobactams	Cell wall
9	Cephotaxime	Lactams/cephalosporin	Cell wall
10	Polymyxin B	Polymyxin/polypeptide	Cell wall
11	Penicillin G	Penicillins/B-lactam	Cell wall
12	Colistin	Cyclic peptides	Cell wall
13	Vancomycin	Glyco/cyclic peptides	Cell wall
14	Methicilin	Carboxylic acids/ dipeptides	Cell wall
15	Cefepime	Lactam/4th gen cephalosporins	Cell wall
16	Cefixime/Clauvulanic Acid	Cephalosporins/alpha amino acids	Cell wall
17	Ceftazidime	Lactams/cephalosporin	Cell wall
18	Chloramphenicol	Amphenicol/ Nitrobenzene	Protein
19	Nalidixic acid	Diazanaphthalenes	Protein
20	Erythromycin	Aminoglycosides	Protein
21	Gentamicin	Aminoglycosides	Protein
22	Amikacin	Aminoglycosides	Protein
23	Tetracyclin	Tetracyclins	Protein
24	Linezolid	Oxazinanes/ Phenylmorpholines	Protein
25	Streptomycin	Aminocyclitol glycosides	Protein
26	Kanamycin	Aminocyclitol glycosides	Protein
27	Clindamycin	Lincosamide	Protein
28	Tobramycin	Aminocyclitol glycosides	Protein
29	Azithromycin	Macrolides/Aminoglycosides	Protein
30	Clarithromycin	Macrolides/Aminoglycosides	Protein
31	Ciprofloxacin	Quinolines	DNA

Table. S2. List of antibiotics used in the current study and its major target sites.

32	Co-trimoxazole	Sulfonamides	DNA
33	Norfloxacin	Quinolines	DNA
34	Rifampicin	Macrolactams	DNA
35	Sparfloxacin	Quinoline carboxylic acids	DNA
36	Moxifloxacin	Quinoline carboxylic acids	DNA
37	Gatifloxacin	Quinoline carboxylic acids	DNA
38	Gemifloxacin	Quinoline carboxylic acids	DNA
39	Levofloxacin	Quinoline carboxylic acids	DNA