Electronic Supplementary	Material (ESI)	for Environmental	Science: \	Nater Re	search & 7	rechnology [
This iournal is © The Rova						0,

Supporting Information

For

Enhanced degradation of atrazine by microbubble ozonation

Yunsi Liu^a, Shuo Wang^a, Lifang Shi^a, Wanmeng Lu^a, Pan Li^{a, b}*

^a School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, PR China

^b School of Environmental Science and Engineering, State Key Laboratory of Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, PR China

1. Degradation of atrazine by ozone microbubble and macrobubble aeration at pH 5, 7 and 9

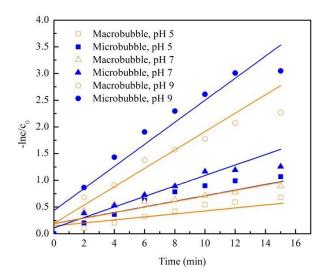


Figure S1. Degradation of atrazine by ozone microbubble and macrobubble aeration at pH 5, 7 and 9. (semi-batch experiment; initial conditions: $[O_3] = 1 \text{mg/L}$, $[Atra]_0 = 1.16 \,\mu\text{mol/L}$, gas flow: 0.5 L/min, T = $20 \pm 1^{\circ}$ C)

Table S1. The pseudo-first-order kinetic equations and correlation coefficients between atrazine and macrobubble and microbubble ozone at pH 5, 7 and 9. (semi-batch experiment; initial conditions: $[O_3] = 1 \text{mg/L}$, $[Atra]_0 = 1.16 \ \mu\text{mol/L}$, gas flow: $0.5 \ \text{L/min}$, $T = 20 \pm 1 \,^{\circ}\text{C}$).

Condition	Regression equation	R^2	k _{obs} (min ⁻¹)
Microbubble, pH 5	y=0.0531x-0.1895	0.973	0.053
Microbubble, pH 7	y=0. 1008x+0.1091	0.951	0.101
Microbubble, pH 9	y=0.2410x+0.298	0.983	0.241
Macrobubble, pH 5	y=0.0281x+0.1503	0.990	0.028
Macrobubble, pH 7	y=0.0530x+0.186	0.841	0.053
Macrobubble, pH 9	y=0.1740x+0.1935	0.957	0.174

2. Degradation of atrazine in the presence of TBA

The reaction rate of t-butanol and \cdot OH is equal to 6.0 \times 10⁸ L/mol·s ¹, and the reaction rate of atrazine and \cdot OH is equal to 3.0 \times 10⁹ L/mol·s ². Therefore, as formula (1) show, 0.06 mM TBA was used as hydroxyl radical scavenger in our experiment.

$$\frac{k_{TBA}[TBA]}{k_{Atra}[Atra]} = \frac{6.0 \times 10^8 \times 0.06 \times 10^{-3}}{3 \times 10^9 \times 1.16 \times 10^{-6}} = 10.34 \ge 10$$
(1)

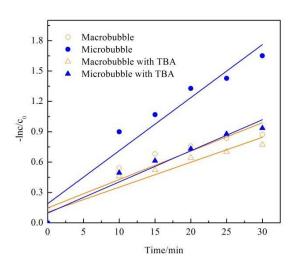


Figure S2. Degradation of atrazine by ozone microbubble and macrobubble aeration at pH 5 in the presence of TBA (semi-batch experiment; initial conditions: $[O_3] = 1 \text{mg/L}$, [TBA] = 0.06 mM, $[Atra]_0 = 1.16 \text{ }\mu\text{mol/L}$, gas flow: 0.5 L/min, $T = 20 \pm 1 ^{\circ}\text{C}$).

Table S2. The pseudo-first-order kinetic equations and correlation coefficients between atrazine and macrobubble and microbubble ozone at pH 5 in the presence of TBA (semi-batch experiment; initial conditions: $[O_3] = 1 \text{mg/L}$, [TBA] = 0.06 mM, $[Atra]_0 = 1.16 \text{ } \mu\text{mol/L}$, gas flow: 0.5 L/min, $T = 20 \pm 1 ^{\circ}\text{C}$).

Condition	Regression equation	R^2	k _{obs} (min ⁻¹)
Microbubble	y=0.0524x-0.1895	0.938	0.052
Microbubble with TBA	y=0.0307x+0.097	0.950	0.031
Macrobubble	y=0.0279x+0.1503	0.901	0.028

Macrobubble with TBA	y=0.0246x+0.1063	0.922	0.025	

3. Size distribution of microbubbles

During our experiment, a large amount of macroscopic microbubbles appeared white and thick at the beginning of aeration, however disappeared within three minutes. In our previous study ³, we examined the concentration of the microbubbles in the solution, in which above 90% of microbubbles disappeared within 1 minute and only nanobubbles left in the solution afterwards as shown in Figure S3.

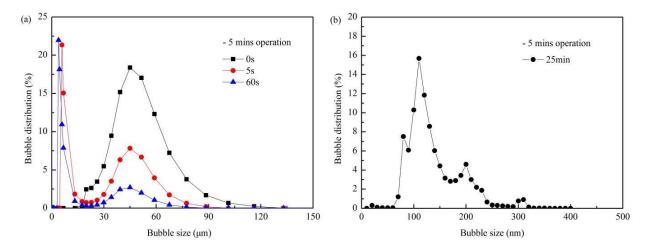


Figure S3. Size distribution of micro- and nanoscale bubbles during a 30 min cycle of aeration.

References

- 1 M. Kuosa, J. Kallas and A. Häkkinen, Ozonation of p-nitrophenol at different pH values of water and the influence of radicals at acidic conditions, *J. Environ. Chem. Eng.*, 2015, **3**, 325–332.
- J. L. Acero, K. Stemmler and U. von Gunten, Degradation Kinetics of Atrazine and Its Degradation Products with Ozone and OH Radicals: A Predictive Tool for Drinking Water Treatment, *Environ. Sci. Technol.*, 2000, **34**, 591–597.
- 3 S. Wang, Y. Liu, P. Li, Y. Wang, J. Yang and W. Zhang, Micro-nanobubble aeration promotes senescence of submerged macrophytes with low total antioxidant capacity in urban landscape water, *Environ. Sci. Water Res. Technol.*, 2020, **6**, 523–531.