Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2020

Supplementary Information Assessing Disinfection Byproduct Risks for Algal Impacted Surface Waters and the Effects of Peracetic Acid Pre-Oxidation

Zachary T. Kralles[†], Kaoru Ikuma[‡], and Ning Dai^{*†}

[†] Department of Civil, Structural and Environmental Engineering
University at Buffalo, the State University of New York, Buffalo, NY, 14260

[†] Department of Civil, Construction and Environmental Engineering Iowa State University, Ames, IA, 50011

*Corresponding author: Post address: 231 Jarvis Hall, Buffalo, NY 14260

Phone: (716) 645-4015; Fax: (716) 645-3667

Email: ningdai@buffalo.edu

Text S1 Materials

Sodium hypochlorite (4–4.99% chlorine), 1,2-dibromopropane (97%), EPA 551B halogenated volatiles mix (2000 μ g/mL each component in acetone), and peracetic acid (32% PAA, 40–45% acetic acid, <6% hydrogen peroxide (H₂O₂)) were obtained from Sigma Aldrich. Acetonitrile (HPLC grade, 99.99%), boric acid (99.8%), sodium hydroxide (99.1%), potassium iodide (100.2%) and sodium sulfate (100.5%) were purchased from Fisher Chemical. Tert-butyl methyl ether (MTBE, \geq 97%) was obtained from Honeywell Fluka. Potassium chloride (\geq 99%) was purchased from Macron. Ammonia salicylate, ammonia cyanurate, and N,N-Diethyl-p-phenylenediamine (DPD) total and free chlorine Permachem reagents were obtained from Hach Company. Hydrochloric acid (2.000 N) was purchased from BDH Chemicals. Sodium thiosulfate anhydrous (Na₂S₂O₃) (>97%) was purchased from EMD Millipore. Milli-Q water was used to prepare all aqueous solutions.

Text S2 Method development for peracetic acid pre-oxidation experiments

Method development for PAA pre-oxidation included four steps. First, the ratio of sodium thiosulfate (Na₂S₂O₃) to PAA needed to quench the reaction was determined. Unlike other disinfection experiments where excess reductant can be used for quenching, PAA pre-oxidation experiments require minimal residual Na₂S₂O₃ such that it would not add significant chlorine demand in the subsequent chlorination step in uniform formation conditions (UFC) tests. Na₂S₂O₃ also reacts with hydrogen peroxide (H_2O_2), but at a much slower rate ($k = 2.3 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$). A series of Na₂S₂O₃ doses were tested on three PAA of different concentrations (Table S3). The results suggest that a quenching molar ratio of 0.22:1 (Na₂S₂O₃:PAA) would fully quench PAA, leaving a small H₂O₂ residual. Second, the potential effects of residual hydrogen peroxide during sample storage (i.e., the time needed to determine the chlorine dose for UFC tests on PAA preoxidized samples) on DBP formation was examined. A lake sample was divided into two portions. One was spiked with 2 mg/L H₂O₂. Both samples sat in the fridge for 48 h (i.e., the typical storage time of PAA pre-oxidized samples) before being subjected to UFC tests. The results from triplicate analysis are shown in Figure S2, which suggest that the residual H₂O₂ during the storage of PAA pre-oxidized samples did not affect DBP formation in subsequent UFC tests. Third, the chlorine demand of H₂O₂ was verified. The chlorine residual in a mixture of H₂O₂ (5 mg/L) and NaOCl (19.5 mg/L as Cl₂) after 20 minutes was 7.53 mg/L, corresponding to 1.15:1 (NaOCl:H₂O₂) molar ratio in their reaction. This is within 15% of the theoretical molar ratio of H₂O₂ to chlorine of 1:1 $(OCl^{-} + H_2O_2 \rightarrow Cl^{-} + H_2O + O_2)$. This chlorine demand of H_2O_2 is considered in the chlorine dosing determination in the subsequent UFC tests (equation 3 in the main text). Fourth, the potential formation of DBPs from a Na₂S₂O₃-quenched PAA solution was examined. A mixture of PAA (6 mg/L) and Na₂S₂O₃ (2.8 mg/L) was prepared and then chlorinated, using excess chlorine (25 mg/L) for 24 h, and analyzed for DBPs. All DBPs were under the detection limit.

In addition, we verified that the addition of PAA and Na₂S₂O₃ did not contribute to fluorescence signals of the samples. The fluorescence of a mixture of PAA (6 mg/L) and thiosulfate (2.8 mg/L), diluted to 1 mg/L DOC, was measured. The resulting excitation emission matrix (EEM) (Figure S3) showed that it had negligible difference from that of Milli-Q water. The dilution factor used in EEM analysis for PAA pre-oxidized samples was calculated based on the DOC value prior to PAA addition in order to minimize sample holding time (needed for DOC measurement). This procedure had the drawback of resulting in slight variation in the DOC level of the samples subjected to EEM analysis. However, most samples were between 1.0–1.4 mg C/L after dilution, except for two as high as 2.8 mg C/L. These different DOC levels were accounted for later in the comparison of EEMs between PAA pre-oxidized samples and their controls.

Table S1. Sampling depths for Lake D samples.

Sample ID	Depth 1 (m)	Depth 2 (m)	Depth 3 (m)	Depth 4 (m)	Total depth (m)
D1	0.25	0.8	1.5	2.5	3.05
D2	0.25	1.0	2.0	3.0	3.65
D3	0.25	1.8	3.6	5.6	6.10
D4	0.25	2.5	5.0	7.5	8.08
D5	0.25	1.3	2.6	4.1	4.57
D6	0.25	0.8	1.5	2.5	3.05

Table S2. Chlorine doses used in UFC tests for samples from Lakes A, B, and C.

			Total
	Chlorine	Free Chlorine	Chlorine
Sample ID	Dose	Residuala	Residual ^a
	(mg/L as Cl ₂)	(mg/L as Cl ₂)	(mg/L as Cl ₂)
A1	7.7	1.1	1.8
A1 A2	9.5	1.1	2.0
A2 A3	9.5 9.5	0.9	1.7
A3 A4	9.3	1.2	2.0
A4 A5	9.2 8.6	1.2	2.0 1.9
A3 A7	6.7		· ·
A7 A9	9.0	1.0 0.8	1.6 1.8
A11	9.9	1.1	2.7
A13	6.8	0.7	1.4
B1 B2	11.9 10.1	0.9 0.9	2.4 1.8
B2 B3	6.1	0.9	1.5
В3 В4			
B4 B5	10.2	0.9 1.0	1.8
	6.6		1.6
B7	10.9	1.2	1.8
B11	86.4	1.0	6.6
B13	9.9	0.9	1.9
C1	11.2	1.2	2.6
C2	11.5	1.1	2.6
C3	11.4	1.1	2.4
C4	10.2	1.1	2.4
C5	9.8	1.0	2.2
C7	11.2	0.8	1.7
C9	13.1	1.3	2.8
C11	13.8	0.7	1.8
C13	12.6	1.2	2.2

^aAfter 24 h.

<u>Table S3.</u> Sodium thiosulfate quenching doses tested on PAA and the resulting molar ratio.

PAA	$Na_2S_2O_3$	PAA residual
(mg/L)	(mg/L)	(mg/L)
	0.35	0.5
	0.375	0.4
1	0.4	0.3
	0.425	0.1
	0.45	<mdl< td=""></mdl<>
	2.4	0.41
5 5	2.5	0.2
5.5	2.6	<mdl< td=""></mdl<>
	2.7	<mdl< td=""></mdl<>
	2.1	0.794
6	2.4	0.501
6	2.7	<mdl< td=""></mdl<>
	3.1	<mdl< td=""></mdl<>

a<MDL: Below the method detection limit (MDL) of 0.1

 Table S4. PAA pre-oxidation and chlorination disinfection conditions.

Sample	Dosing Condition ^a	PAA Dose (mg/L)	Exposure Time (hr)	PAA Residual (mg/L)	PAA Exposure ^b (mg hr L ⁻¹)	H ₂ O ₂ Residual (mg/L)	Chlorine Dose (mg/L as Cl ₂)	Free Chlorine Residual ^c (mg/L as Cl ₂)
	Control						9.5	0.7
D1	Low	2	2	1.8	3.8	1.8	12.4	1.2
	High	6	6	3.6	28.7	1.1	12.1	1.2
	Control						11.6	1.3
Da	Low	2	2	1.8	3.8	1.7	11.8	1.1
D2	Med	6	6	4.8	10.8	1.7	12.4	1.3
	High	6	6	3.1	27.3	1.8	12.7	1.3
	Control						8.2	1.0
D2	Low	2	2	1.5	3.5	1.5	8.3	1.0
D3	Med	6	6	3.9	9.9	1.6	9.2	1.3
	High	6	6	3.0	26.9	1.5	9.1	1.1
	Control						14.9	1.1
D4	Low	2	2	1.0	3.0	1.7	15.5	1.2
D4	Med	6	6	2.4	8.4	1.6	15.2	1.2
	High	6	6	1.9	23.8	1.7	14.9	0.7
	Control						8.9	1.0
D.5	Low	2	2	1.6	3.6	0.3	8.5	0.7
D5	Med	6	6	4.3	10.3	0.2	9.1	1.1
	High	6	6	3.2	27.6	0.3	10.4	1.2
-	Control						10.0	1.2
DC	Low	2	2	1.7	3.7	1.3	10.2	0.9
D6	Med	6	6	4.6	10.6	1.4	11.0	1.1
	High	6	6	3.4	28.2	1.6	11.1	0.8
2D 4 4 1 '	11.1	D 4 4 /	. 1\	1 60	/T 1.1		201 (1) 6 (7	0.1 / 1:

^aPAA dosing conditions: no PAA (control), initial dose of 2 mg/L with a contact time of 2 h (low), 6 mg/L with 2 h (medium), and 6 mg/L with 6 h (high); ^bCalculation of PAA exposure is discussed in Section 2.5;

^cAfter 24 h.

Table S5. DBP formation, yields, and calculated cytotoxicity by UFC tests for samples from lakes A, B, and C.

Sample	Ι	OBP Forma	tion (µg/L	.)	Ι	DBP Yield (µg/mg C)		()	Calculated Cytotoxicity (×10 ⁻³		ity ($\times 10^{-3}$)
ID	THMs	HANs	HKs	TCNM	THMs	HANs	HKs	TCNM	THMs	HANs	TCNM
A1	97.3	6.5	0.46	4.5	22.4	1.5	0.11	1.0	0.08	1.25	0.05
A2	94.4	7.7	0.58	9.0	19.9	1.6	0.12	1.9	0.08	1.50	0.10
A3	98.0	7.3	0.62	7.0	13.9	1.0	0.09	0.99	0.08	1.44	0.08
A4	90.3	6.8	0.49	7.5	19.6	1.5	0.11	1.6	0.08	1.41	0.08
A5	91.8	6.9	0.49	7.8	20.4	1.5	0.11	1.7	0.08	1.43	0.09
A7	111	9.5	1.0	9.1	27.9	2.4	0.26	2.3	0.10	1.81	0.10
A9	118	15.4	1.3	7.8	22.4	2.9	0.25	1.5	0.10	2.86	0.09
A11	120	24.4	2.0	9.3	26.9	5.5	0.45	2.1	0.10	4.83	0.11
A13	91.0	13.3	1.8	6.1	24.5	3.6	0.49	1.6	0.08	2.56	0.07
B1	124	14.4	1.2	5.2	36.2	4.2	0.35	1.51	0.11	3.30	0.06
B2	107	8.8	0.50	2.1	28.4	2.3	0.13	0.55	0.09	1.90	0.02
В3	94.5	7.3	0.37	1.9	20.7	1.6	0.08	0.41	0.08	1.66	0.02
B4	115	9.9	0.44	2.6	23.8	2.1	0.09	0.54	0.10	2.28	0.03
B5	133	8.7	1.2	0.27	18.6	1.2	0.16	0.04	0.11	2.53	0.00
В7	92.2	9.1	0.81	2.4	19.6	1.5	0.16	0.21	0.08	2.67	0.03
B11	372	81.2	11.4	6.8	31.1	6.8	0.95	0.57	0.34	12.84	0.08
B13	111	87.2	1.2	9.7	21.1	16.6	0.23	1.8	0.10	17.09	0.11
C1	150	23.5	0.72	1.5	21.7	3.4	0.11	0.21	0.13	4.51	0.02
C2	152	24.0	0.60	0.92	19.5	3.1	0.08	0.12	0.13	4.59	0.01
C3	132	11.4	0.91	0.42	20.3	1.8	0.14	0.06	0.11	2.10	0.00
C4	109	9.6	0.86	0.64	17.4	1.5	0.14	0.10	0.09	1.82	0.01
C5	140	14.6	0.52	0.80	18.2	1.9	0.07	0.10	0.12	2.84	0.01
C7	102	10.8	1.1	1.5	13.9	1.5	0.15	0.21	0.09	2.13	0.02
C9	135	33.4	1.6	1.8	14.5	3.6	0.17	0.19	0.12	6.21	0.02
C11	120	19.6	1.4	2.0	16.2	2.0	0.19	0.29	0.10	3.15	0.02
C13	111	13.8	1.3	1.7	14.2	2.1	0.16	0.21	0.10	3.39	0.02

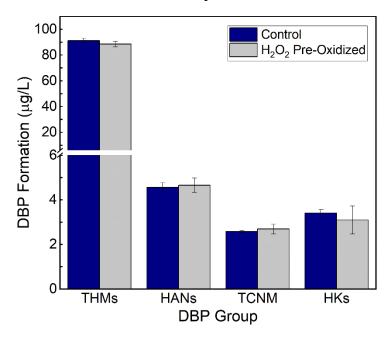
Table S6. Pearson's r and Spearman's ρ correlation coefficients between the yields of different DBPs for samples from Lakes A, B, and C. A strong correlation is considered to be r, $\rho \geq |0.5|$ with $p \leq 0.05$. Statistically significant correlations are in bold text.

		THMs		HA	Ns	TCNM		
		r	ρ	r	ρ	r	ρ	
	TTANT.	0.712	0.833					
	HANs	p = 0.032	p = 0.005					
Lake A	TCNM	0.704	0.617	0.501	0.6			
Lake A	TCINIVI	p = 0.034	p = 0.077	p = 0.170	p = 0.088			
	HKs	0.707	0.867	0.909	0.967	0.454	0.655	
	пкѕ	p = 0.033	p = 0.002	p = 0.001	p < 0.001	p = 0.219	p = 0.058	
	HANs	0.04	0.738					
	HAINS	p = 0.926	p = 0.037					
Lake B	TCNM	0.421	0.762	0.801	0.976			
Lake D		p = 0.300	p = 0.028	p = 0.017	p < 0.001			
	HKs	0.55	0.429	0.289	0.548	0.128	0.524	
		p = 0.158	p = 0.289	p = 0.487	p = 0.160	p = 0.763	p = 0.183	
	HANs	0.225	0.233					
		p = 0.507	p = 0.546					
Lake C	TCNM	-0.45	-0.317	0.199	0.317			
Lake C		p = 0.225	p = 0.406	p = 0.607	p = 0.406			
	HKs	-0.628	-0.633	-0.1685	0.083	0.578	0.467	
	111X5	p = 0.070	p = 0.067	p = 0.665	p = 0.831	p = 0.103	p = 0.205	
	HANs	0.271	0.573					
		p = 0.181	p = 0.002					
All	TCNM	0.452	0.577	0.329	0.307			
Lakes	1 CINIVI	p = 0.021	p = 0.002	p = 0.101	p = 0.127			
	HKs	0.580	0.386	0.401	0.527	0.253	0.332	
	HKS	p = 0.002	p = 0.051	p = 0.043	p = 0.006	p = 0.213	p = 0.098	

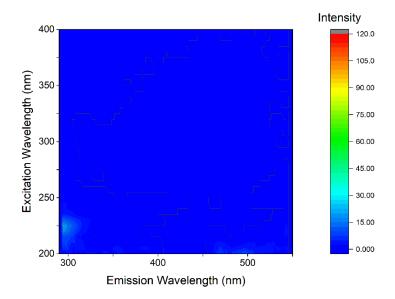
Table S7. DBP formation and calculated cytotoxicity by UFC tests after PAA pre-oxidation for samples from Lake D.

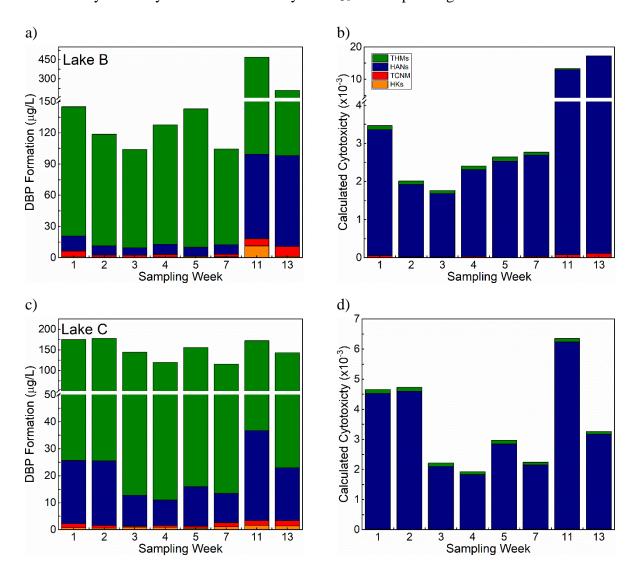
Sample	Dosing	DI	3P Forma	Calculated		
ID	Condition ^a	THMs	HANs	HKs	TCNM	Cytotoxicity (×10 ⁻³)
	Control	151.4	21.2	14.4	6.32	8.84
D1	Low	135.8	23.1	22.8	6.79	8.74
	High	120.9	24.7	100.4	8.61	9.16
	Control	166.7	22.5	23.1	6.28	8.67
D2	Low	162.6	26.0	63.8	6.73	11.55
D2	Med	139.4	22.5	81.2	8.06	8.36
	High	105.1	21.8	63.3	7.35	7.86
	Control	104.4	10.0	0.67	0.50	2.13
D3	Low	101.5	10.3	0.51	0.50	2.05
DЗ	Med	95.9	10.4	1.1	0.75	2.05
	High	88.5	11.3	1.1	0.76	2.18
	Control	100.8	21.8	0.88	0.65	4.08
D4	Low	95.7	24.1	0.96	0.62	4.54
D4	Med	90.3	23.7	1.2	0.84	4.49
	High	94.0	23.3	0.9	0.81	4.40
	Control	138.9	21.7	19.7	6.53	8.80
D5	Low	119.6	18.6	22.1	7.30	7.30
DS	Med	122.7	21.0	25.7	7.02	7.36
	High	115.2	23.8	29.5	7.55	8.63
	Control	121.4	10.6	1.7	0.75	2.20
D6	Low	126.9	11.3	0.48	0.60	2.37
D6	Med	112.2	12.3	0.76	0.63	2.49
	High	116.9	13.1	0.63	0.71	2.65

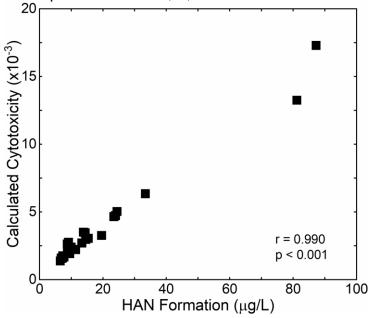
^aPAA dosing conditions: no PAA (control), initial dose of 2 mg/L with a contact time of 2 h (low), 6 mg/L with 2 h (medium), and 6 mg/L with 6 h (high)

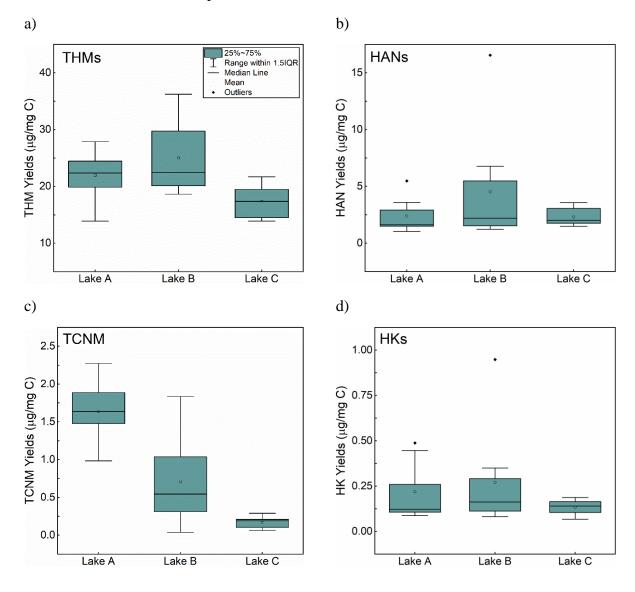

Table S8. Excitation-emission matrix region volumes for PAA pre-oxidized samples. Regions I-V represent the fluorescence from tyrosine-like (I), tryptophan-like (II), fulvic-like (III), soluble microbial product-like (IV), and humic-like (V) moieties. The volumes are normalized to 1 mg C/L DOC (Text S2).

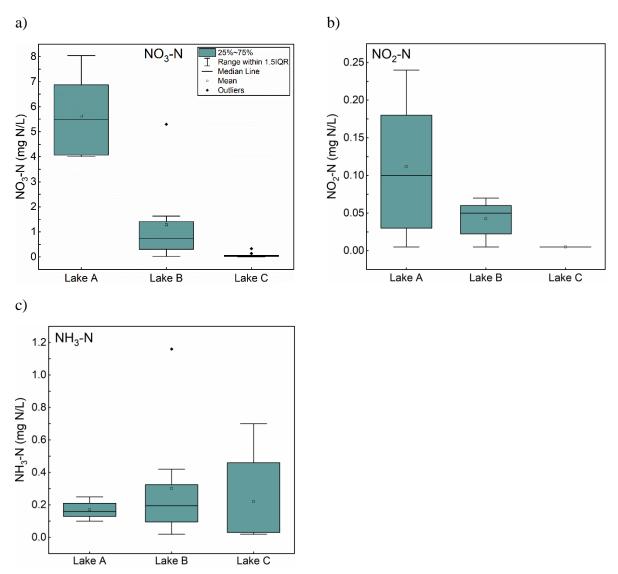
CILIDOC	(10At 52).					
Sample ID	Dosing Condition	I	II	III	IV	V
	Control	42574	81548	291830	62648	313830
D3	Low	29584	59076	228868	54427	295795
23	Med	27718	52654	238395	49088	289082
	High	33537	54617	221522	49437	258282
	Control	25811	60386	288690	59287	379830
D4	Low	19937	44066	240738	44969	318716
D 4	Med	34404	79725	372159	72681	474564
	High	29083	57373	286341	52622	359873
	Control	25696	44500	159320	49795	238670
D5	Low	14083	22712	80357	22861	114046
DS	Med	26518	42735	150007	41347	207324
	High	15946	23384	77551	20391	91944
D6	Control	38249	69134	235050	67029	319120
	Low	34129	57861	219226	58624	301780
Du	Med	63032	135442	280830	108884	349113
	High	38662	65269	211971	57121	237010

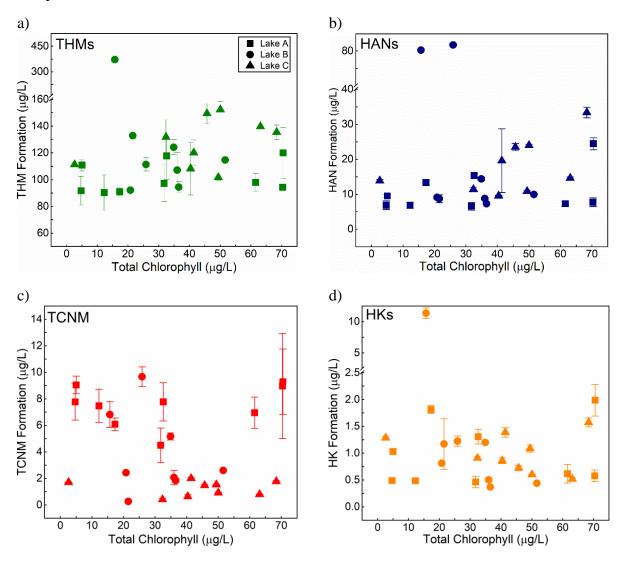

Figure S1. Lake D sampling sites.

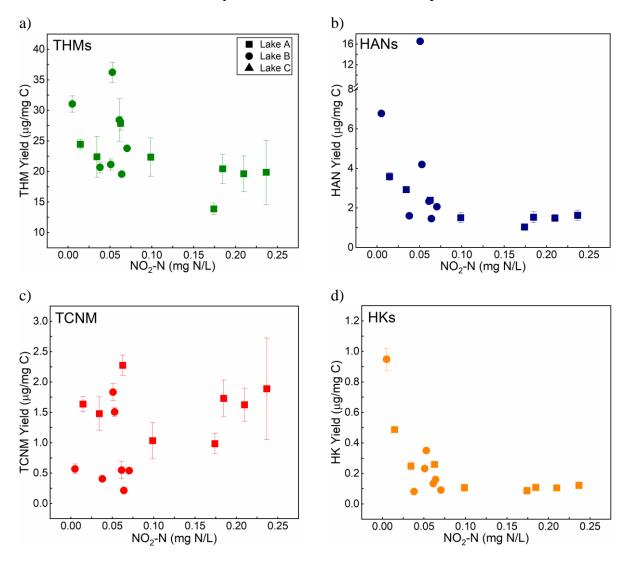

Figure S2. The effects of H₂O₂ residual during sample storage time between PAA quenching and UFC chlorination on the potential DBP formation of dissolved organic matter

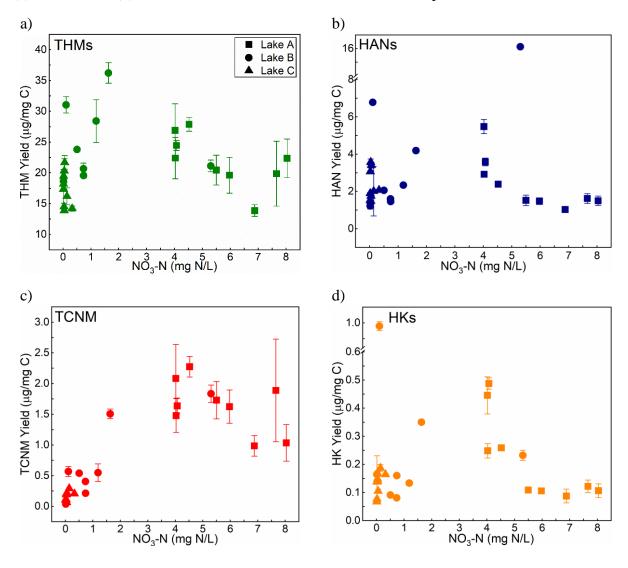

Figure S3. The fluorescence EEM of a mixture of PAA (6 mg/L) and thiosulfate (2.8 mg/L), diluted to 1 mg/L DOC. Intensity scale is similar with EEMs in main text Figure 6 for comparison.

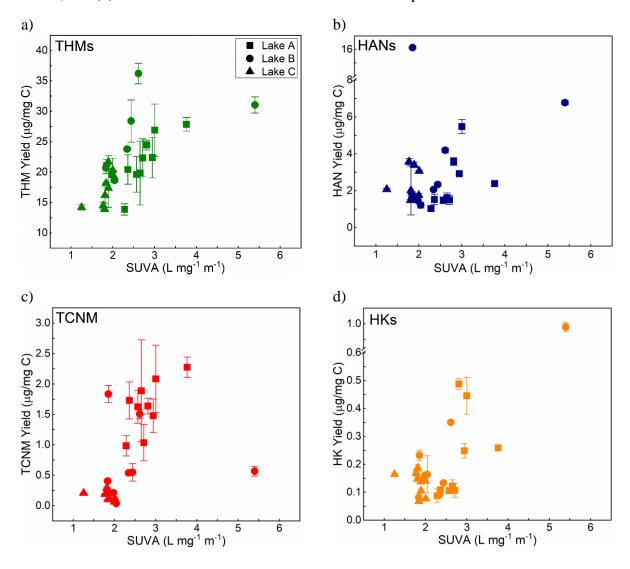

Figure S4. Variation in DBP formation in UFC tests and the corresponding calculated cytotoxicity for (a, b) Lake B and (c, d) Lake C Samples. HKs were not included in the calculated cytotoxicity due to unavailability of LC₅₀. Corresponding data are shown in Table S5.

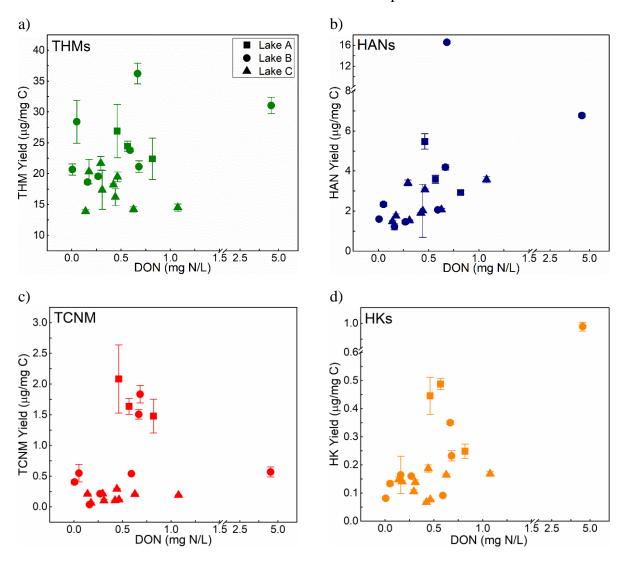

Figure S5. Correlation between HAN formation in UFC tests and the calculated cytotoxicity for all samples from Lakes A, B, and C.

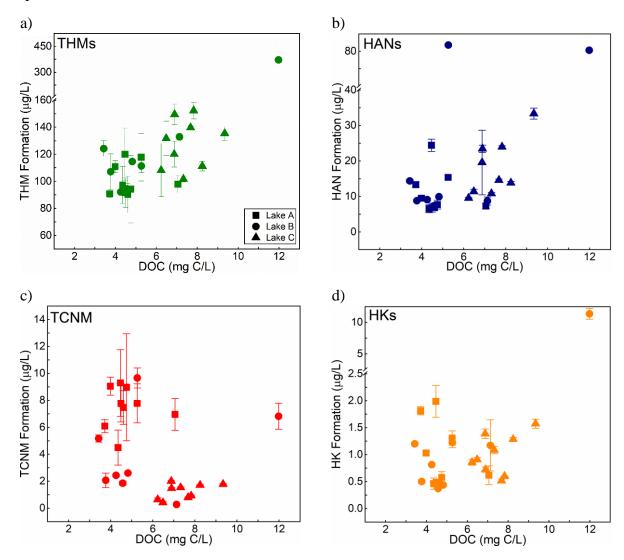

Figure S6. Variability in the yields of (a) THMs, (b) HANs, (c) TCNM, and (d) HKs, for UFC tests on Lake A, B and C samples.

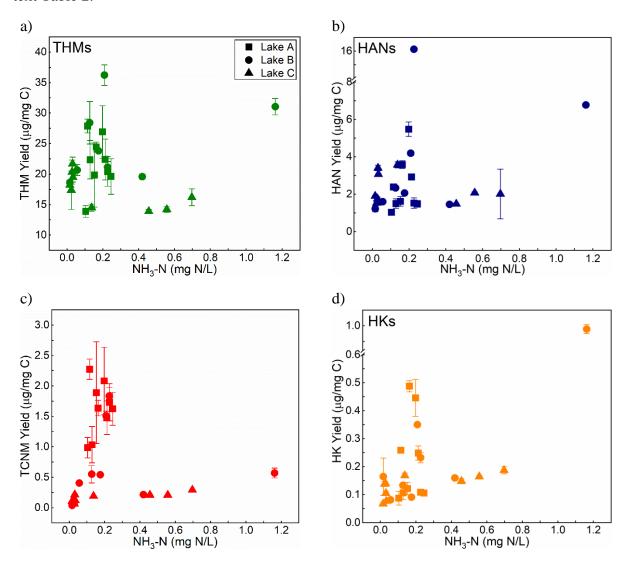

Figure S7. Variability in the concentration of organic nitrogen species (a) nitrate (NO₃-N), (b) nitrite (NO₂-N), and (c) ammonia (NH₃-N) for the Lake A, B, and C samples.

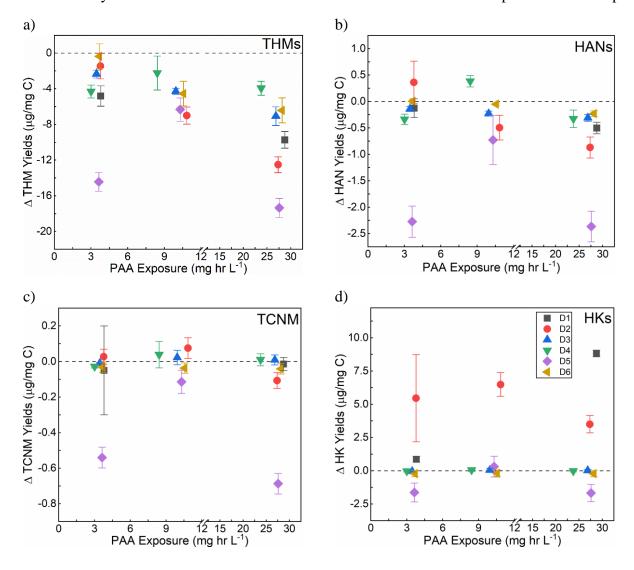

Figure S8. Relationship between total chlorophyll concentrations and the non-normalized formation of (a) THMs, (b) HANs, (c) TCNM, and (d) HKs in UFC tests. Correlation statistics are reported in main text Table 2.


Figure S9. Relationship between NO₂-N concentrations and the yields of (a) THMs, (b) HANs, (c) TCNM, and (d) HKs in UFC tests. Samples with NO₂-N concentrations below the detection limit (all Lake C samples) are not plotted, however they were assigned a value of half the detection limit for statistical analyses. Correlation statistics are reported in main text Table 2.


Figure S10. Relationship between NO₃-N concentrations and the yields of (a) THMs, (b) HANs, (c) TCNM, and (d) HKs in UFC tests. Correlation statistics are reported in main text Table 2.


Figure S11. Relationship between SUVA values and the yields of (a) THMs, (b) HANs, (c) TCNM, and (d) HKs in UFC tests. Correlation statistics are reported in main text Table 2.


Figure S12. Relationship between DON concentrations and the yields of (a) THMs, (b) HANs, (c) TCNM, and (d) HKs in UFC tests. DON was calculated as the difference between total nitrogen and the sum of the inorganic nitrogen species. Samples with DON concentrations below detection limit are not included. Correlation statistics are reported in main text Table 2.


Figure S13. Relationship between DOC concentrations and the non-normalized formation potential of (a) THMs, (b) HANs, (c) TCNM, and (d) HKs in UFC tests. Correlation statistics are reported in main text Table 2.

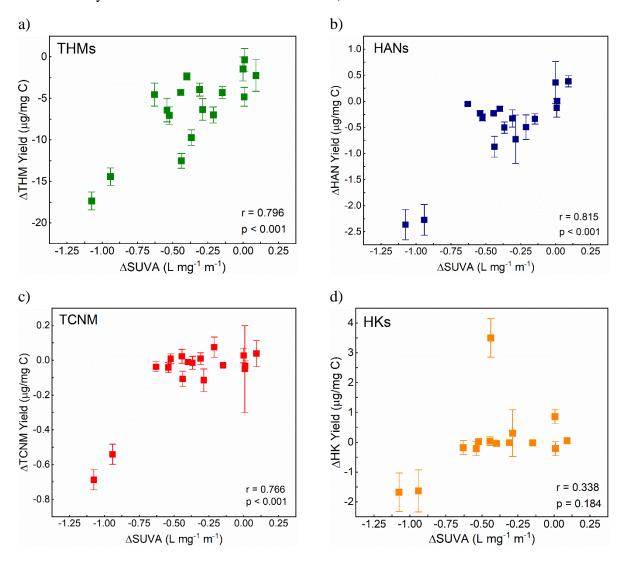

Figure S14. Relationship between NH₃-N concentrations and (a) THM, (b) HAN, (c) TCNM, and (d) HK yields using uniform formation conditions. Correlation statistics are reported in main text Table 2.

Figure S15. Change in the yields of (a) THMs, (b) HANs, (c) TCNM, and (d) HKs in six samples from Lake D by PAA pre-oxidation. Three PAA dosing conditions were evaluated: initial dose 2 mg/L with contact time 2 h (low), 2 mg/L with 6 h (med), 6 mg/L with 6 h (high). PAA decay was considered in the calculation of exposure for each sample (section 2.5). ΔDBP Yield. = (DBP concentration after UFC tests of the PAA pre-oxidized sample / Adjusted DOC of the PAA pre-oxidized sample) – (DBP concentration after UFC test of the corresponding control / DOC of the corresponding control). Adjusted DOC was calculated by subtracting the DOC contributed by PAA and acetic acid from the measured DOC for each PAA pre-oxidized sample.

Figure S16. Relationship between the change in SUVA and the change in the yields of (a) THM, (b) HAN, (c) TCNM, and (d) HK in UFC tests by PAA pre-oxidation. For the PAA pre-oxidized samples, the DBP yields and SUVA were both calculated using the adjusted DOC (i.e., the DOC contributed by PAA and acetic acid was subtracted).

References

- 1. M. Voslař, P. Matějka and I. Schreiber, Oscillatory Reactions Involving Hydrogen Peroxide and ThiosulfateKinetics of the Oxidation of Tetrathionate by Hydrogen Peroxide, *Inorganic Chemistry*, 2006, **45**, 2824-2834.
- 2. O. S. Keen, A. D. Dotson and K. G. Linden, Evaluation of Hydrogen Peroxide Chemical Quenching Agents following an Advanced Oxidation Process, *J. Environ. Eng.-ASCE*, 2013, **139**, 137-140.