Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2020

Enhancement of ozonation efficiency employing dead-end hollow fiber membranes

Efthimia Kaprara^a, Margaritis Kostoglou^b, Chrysovalantou Koutsiantzi ^a, Savvina Psaltou^b, Anastasios I. Zouboulis^b and Manassis Mitrakas*^a

Electronic Supplementary Information

Experimental setup

Fig. ESI1 Ozonation continuous flow pilot unit.

Ozone self-decomposition

1. Kinetics

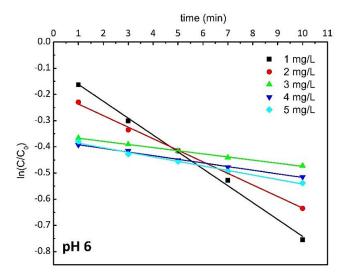


Fig. ESI2 Plot of $ln(C/C_0)$ versus time for self-decomposition of ozone at pH 6.

^a-Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece. E-mail: manasis@eng.auth.gr

b. Laboratory of Chemical and Environmental Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124, Greece.

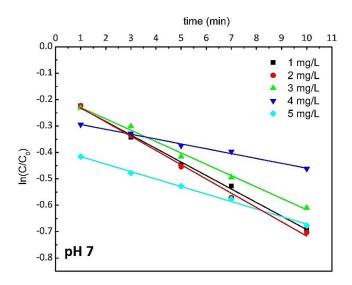


Fig. ESI3 Plot of $ln(C/C_0)$ versus time for self-decomposition of ozone at pH 7.

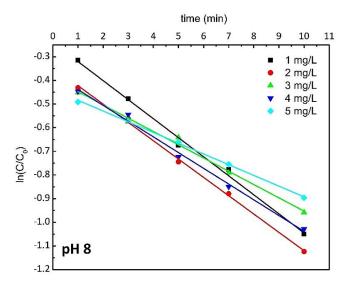


Fig. ESI4 Plot of $ln(C/C_0)$ versus time for self-decomposition of ozone at pH 8.

2. Calculations for ozone self-decomposition after the membrane

The residence time for ozone self-destruction, t_d , is calculated as the sum of time intervals, Σt_i , spent in each section of the experimental set up after the mixture is exiting the membrane and just before the dissolved ozone meter. A time interval, t_i is determined as $t_i = L_i/(Q_L/E_i)$, where Q_L is the liquid flow and L_i , E_i the length and area of each section. Residence time is then corrected with volume fraction, ϕ , as $t_{d cor} = t_{d}(1-\phi)$.

Volume fraction is calculated as analytically shown below.

$$\phi = \frac{Q_{O_2} + Q_{N_2}}{Q_{O_2} + Q_{N_2} + Q_L} \tag{ESI1}$$

$$Q_{N_2} = \%N_2 \cdot Q_{gas} \tag{ESI2}$$

$$Q_{O_{2}} = \frac{P_{STP} \cdot T}{P \cdot T_{STP}} Q_{O_{2} STP}$$

$$Q_{O_{2} STP} = \frac{V_{STP}}{M_{r} O_{2}} \frac{m_{O_{2}}}{10^{3}}$$
(ESI3)

$$Q_{O_2 STP} = \frac{V_{STP}}{M_{PQ}} \frac{\dot{m}_{O_2}}{10^3}$$
 (ESI4)

$$\dot{m}_{O_2} = (C_{O_{2,Lt}} - C_{in,O_2})Q_L$$
 (ESI5)

where:

 Q_{gas} = volumetric flowrate of gas, L/h

 $Q_{O_2} = \text{volumetric flowrate of oxygen gas ,L/h}$

 $Q_{N_2} = \text{volumetric flowrate of nitrogen gas, L/h}$

 $%N_2 = nitrogen mol fraction$

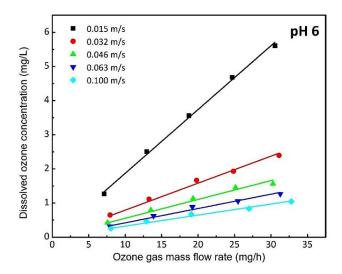
 P_{STP} = standard pressure (1 atm)

 T_{STP} = standard temperature (273.15 K)

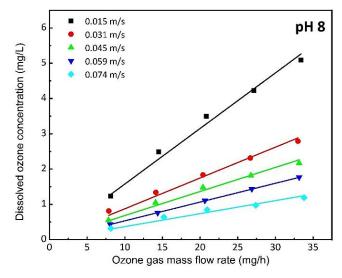
P = pressure (atm)

T = temperature(K)

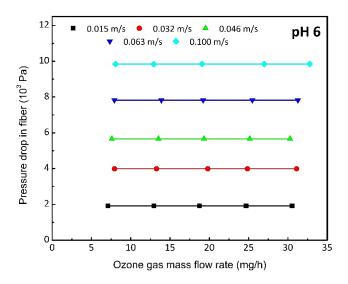
 V_{STP} = volume of a mole of gas at STP (22.4L)


 $Q_{O_2\,STP}=$ volumetric flowrate of oxygen gas at STP, L/h

 $M_{r \, O_2}$ =molar mass of O_2


 \dot{m}_{0_2} = dissolved oxygen mass flow rate in the membrane, mg/L

 C_{in,O_2} = dissolved oxygen concentration in the feed water, mg/L


 $\rm C_{\rm O_{2,L}} = dissolved$ oxygen concentration in liquid outflow from the fiber, mg/L

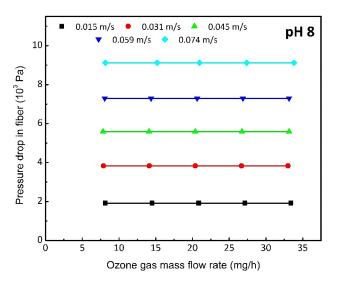

Fig. ESI5 Dissolved ozone concentrations versus ozone gas mass flow rate for different liquid velocities at pH 6 (PDMS membrane).

Fig. ESI6 Dissolved ozone concentrations versus ozone gas mass flow rate for different liquid velocities at pH 8 (PDMS membrane).

Fig. ES17 Pressure drop in the fiber versus ozone gas mass flow rate for different liquid velocities at pH 6 (PDMS membrane).

Fig. ESI8 Pressure drop in the fiber versus ozone gas mass flow rate for different liquid velocities at pH 6 (PDMS membrane).

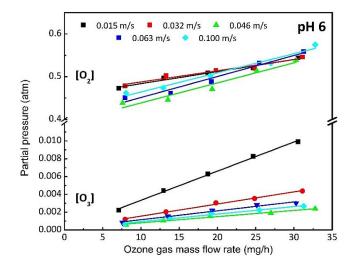


Fig. ESI9 Partial pressures of O_2 and O_3 in the shell side versus ozone gas mass flow rate for different liquid velocities at pH 6 (PDMS membrane).

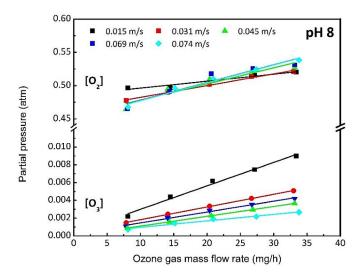


Fig. ESI10 Partial pressures of O_2 and O_3 in the shell side versus ozone gas mass flow rate for different liquid velocities at pH 8 (PDMS membrane).