Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

High-throughput and reliable determination of 13 haloacetic acids and dalapon in water and evaluation of control strategies

Cristina Postigo^{a*}, Pere Emiliano^b, Fernando Valero^b

^a Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain

^b Department of R+D+i & Process Control. Ens d'Abastament d'Aigua Ter-Llobregat (ATL), Sant Martí de l'Erm 30, 08970, Sant Joan Despí, Barcelona, Spain

Cristina Postigo (0000-0002-7344-7044)
Institute of Environmental Assessment and Water
Research (IDAEA-CSIC), Dept. of Environmental Chemistry
C/ Jordi Girona 18-26, 08034 Barcelona, Spain.
<u>cprqam@cid.csic.es</u>
Tel: +34-934-006-100, Fax: +34-932-045-904

LIST OF TABLES

Table S1. Target haloacetic acids and main physical-chemical properties. 3	}
Table S2. TOC, turbidity, UV absorbance and dissolved aluminum in source and clarified	
waters.	5
Table S3. Residual free chlorine (mg/L) in the HAA formation potential test samples collected	
at different times	,
Table S4. Linearity figures (i.e, linearity range and coefficient of determination of weighted	
(1/x) linear regression models) obtained in matrix-matched calibration curves constructed	
using the internal standard method	3

LIST OF FIGURES

Figure S1. Formation of pseudomolecular ions and main product ions of HAAs under
electrospray negative ionization9
Figure S2. Chromatographic resolution of HAA peaks after LVI (200 μ l)-LC-ESI(-)-HRMS of an
HPLC-grade water containing 30 $\mu\text{g/L}$ of the HAAs mix in the two LC columns tested. A mobile
phase consisting of ACN: H2O, both with 0.1% formic acid, was used in both injections10
Figure S3. Chromatographic separation of HAAs (25 μ g/L) in the Lunar Omega Polar C18
column using different mobile phase compositions: methanol or acetonitrile as organic
constituent11
Figure S4. Average trueness of HAA measurements in HPLC-grade water samples (n=3)
fortified at a concentration of 5 μ g/L and after two and seven days stored at -20ºC in the dark.
Error bars indicate RSD values of n=3 independently prepared and analyzed samples
Figure S5. X-fold increase of DBP concentrations at different reaction times with respect to
t=0, calculated as C_t/C_0 , where C_t is the concentration at time = 24 h, 48 h or 72 h and C_0 is the
concentration at time =013

Target I-HAAs	Abr.	CAS #	Monoisotopic mass (Da)	Molecular formula (SMILES)	Molecular structure	рКаª	Log P ^b	Solubility (mg/L)♭	Vapor pressure (mm Hg) ^b	Source	Purity (%)
Chloro-acetic acid	CAA	79-11-8	93.9822	CH₂Cl-COOH (C(C(=O)O)Cl)	СІ ОН	3.1	0.34 (0.22)	1.953e5 (8.58e5)	0.247 (6.50e-2)	Sigma- Aldrich (EPA 552.2 mix)	98.1
Bromo-acetic acid	BAA	79-08-3	137.9316	CH₂Br-COOH (C(C(=O)O)Br)	Br	2.6	0.43 (0.41)	9.379e4 (1.75e6)	0.131 (0.118)	Sigma- Aldrich (EPA 552.2 mix)	99.9
lodo-acetic acid	IAA	64-69-7	185.9178	CH₂I-COOH (C(C(=O)O)I)	ОН	3.0	0.85	2.426e4	0.0323	Sigma- Aldrich	>98.0
Bromochloro- acetic acid	BCAA	5589-96-8	171.8927	CHBrCl-COOH (C(C(=O)O)(Cl)Br)	Br, OH	2.0	0.61	4.427e4	0.137	Sigma- Aldrich (EPA 552.2 mix)	99.9
Dichloro-acetic acid	DCAA	79-43-6	127.9432	CHCl₂-COOH (C(C(=O)O)(Cl)Cl)	CI OH	2.3	0.52 (0.92)	3.776e4 (1 e6)	0.00667 (0.179)	Sigma- Aldrich (EPA 552.2 mix)	99.0

Table S1. Target haloacetic acids and main physical-chemical properties.

Dibromo-acetic acid	DBAA	631-64-1	215.8421	CHBr₂-COOH (C(C(=O)O)(Br)Br)	Br Br OH	1.6	0.70	2.14e4	0.023	Sigma- Aldrich (EPA 552.2 mix)	97.0
Chloroiodo- acetic acid	CIAA	53715-09-6	219.878799	CHICI-COOH (C(C(=O)O)(CI)I)	CI OH	2.3	1.03	1.132e4	0.0181	CanSyn	100.0
Bromoiodo- acetic acid	BIAA	71815-43-5	263.8283	CHIBr-COOH (C(C(=O)O)(Br)I)	Br, OH	1.9	1.12	5414	0.00464	CanSyn	93.9
Diiodo-acetic acid	DIAA	598-89-00	311.8144	CHI ₂ -COOH (C(C(=O)O)(I)I)	ОН	2.3	1.53	1282	0.00045	CanSyn	95.1
Trichloro-acetic acid	TCAA	76-03-9	161.9042	CCl₃-COOH (C(=O)(C(Cl)(Cl)Cl)O)	CI CI CI CI	1.7	1.44 (1.33)	1.99e4 (5.46e4)	0.196 (6.00e-2)	Sigma- Aldrich (EPA 552.2 mix)	99.9

Bromodichloro- acetic acid	BDCAA	71133-14-7	205.8537	CBrCl ₂ -COOH (C(=O)(C(Br)(Cl)Cl)O)	Br, OH CI CI	1.5	1.53	4869	0.036	Sigma- Aldrich (EPA 552.2 mix)	99.6
Chlorodibromo- acetic acid	DBCAA	5278-95-5	249.8032	CBr ₂ Cl-COOH (C(=O)(C(Br)(Br)Cl)O)	Br OH Br Cl	1.1	1.62	2353	0.00519	Sigma- Aldrich (EPA 552.2 mix)	86.0
Tribromo-acetic acid	ТВАА	75-96-7	293.7527	CBr ₃ -COOH (C(=O)(C(Br)(Br)Br)O)	Br OH Br Br	0.7	1.71	1102	0.00028	Sigma- Aldrich (EPA 552.2 mix)	98.1
Dalapon	DPN	75-99-0	141.9588	CH3-CCl2-COOH (CC(C(=O)O)(Cl)Cl)	CI CI CI	2.6	1.68	7432 (5.02e5)	0.67 (0.151)	Sigma- Aldrich	>90
2,3Dibromo- propanoic acid	DBPA	600-05-5	229.8578	CH ₂ Br-CHBr-COOH C(C(C(=O)O)Br)Br	Br OH Br	2.24	1.19	7092	0.00637	Sigma- Aldrich	>90

^aACE and JChem acidity and basicity calculator – www.chemicalize.com

^b US Environmental Protection Agency's EPISuite - Predicted values (experimental values)

	Source water	Clarified water (pH 7.1)	Clarified water (pH 7.8)
TOC [mg/L]	3.22	2.47	2.49
Turbidity [NTU]	60	0.87	1.09
UV ₂₅₄ [m ⁻¹]	-	4.26	4.07
Dissolved aluminum [mg/L]	-	0.02	0.13

Table S2. TOC, turbidity, UV absorbance and dissolved aluminum in source and clarifiedwaters.

	Clarified water (ph 7.1)	Clarified water (pH.7.8)
0 h	8.0	8.0
24 h	3.4	3.1
48 h	3.1	2.6
72 h	2.4	2.1

Table S3. Residual free chlorine (mg/L) in the HAA formation potential test samples collected at different times.

Table S4. Linearity figures (i.e, linearity range and coefficient of determination of weighted (1/x) linear regression models) obtained in matrix-matched calibration curves constructed using the internal standard method.

		Linearity							
	Clarifie	d water	Тар у	water					
	Range [µg/L]	R ²	Range [µg/L]	R ²					
CAA	6-100	0.9953	6-100	0.9962					
BAA	1-100	0.9981	1-100	0.9952					
IAA	0.6-100	0.9982	0.6-100	0.9944					
DCAA	0.6-100	0.9984	0.6-100	0.9933					
DBAA	0.6-100	0.9938	0.6-100	0.9939					
DIAA	0.06-60	0.9987	0.3-60	0.9979					
BCAA	0.6-100	0.9930	0.3-100	0.9964					
BIAA	0.6-100	0.9966	0.6-100	0.9909					
CIAA	0.3-100	0.9931	0.3-100	0.9935					
TCAA	3-100	0.9977	3-100	0.9927					
TBAA	3-100	0.9967	1-100	0.9939					
DCBAA	6-100	0.9951	6-100	0.9934					
DBCAA	3-100	0.9962	3-100	0.9926					
חסח	3-100	0 9991	1-100	0.9947					

Figure S1. Formation of pseudomolecular ions and main product ions of HAAs under electrospray negative ionization.

Figure S2. Chromatographic resolution of HAA peaks after LVI (200 μ I)-LC-ESI(-)-HRMS of an HPLC-grade water containing 30 μ g/L of the HAAs mix in the two LC columns tested. A mobile phase consisting of ACN: H2O, both with 0.1% formic acid, was used in both injections.

 H_2O :acetonitrile, both 0.1% FA

Figure S3. Chromatographic separation of HAAs (25 μ g/L) in the Lunar Omega Polar C18 column using different mobile phase compositions: methanol or acetonitrile as organic constituent.

Figure S4. Average trueness of HAA measurements in HPLC-grade water samples (n=3) fortified at a concentration of 5 μ g/L and after two and seven days stored at -20°C in the dark. Error bars indicate RSD values of n=3 independently prepared and analyzed samples.

Figure S5. X-fold increase of DBP concentrations at different reaction times with respect to t=0, calculated as C_t/C_0 , where C_t is the concentration at time = 24 h, 48 h or 72 h and C_0 is the concentration at time =0.