Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2020

Reaction of chlorine dioxide with organic matter

- Formation of inorganic products -

- Electronic Supplementary Information (ESI) -

Katharina Hupperich[†], Xenia A. M. Mutke[†], Mohammad S. Abdighahroudi^{\$}, Mischa Jütte^{\$}, Torsten C. Schmidt^{†,‡,§} and Holger V. Lutze^{* \$,†,‡,§}

 [†]University of Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitätsstraße 5, D-45141 Essen, Germany
 *Technical University of Darmstadt, Department of Civil and Environmental Engineering
 Sciences, Institute IWAR, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
 [‡]IWW Water Centre, Moritzstraße 26, D-45476 Mülheim an der Ruhr, Germany
 [§]Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, D-45141
 Essen, Germany

Table of Content

Material and Methods

Table S1: All used chemicals	S4
Table S2: All used instruments	S5
Table S3: All used methods	S6
Table S4: Reaction rate constants of used compounds at defined pH	S 7
Text S1: Production of CIO ₂	S 7
Figure S1: Experimental setup of CIO ₂ production	S8
Text S2: Production of O ₃	S9
Table S5: Composition and CIO_2 dosages of the investigated compounds for thoxidation experiments	e S10
Figure S2: Workflow of the oxidation experiments	S10
Table S6: Reaction time of the investigated compounds with CIO2	S11
Table S7: Limits of detection (LOD) and limits of quantification (LOQ) of themeasured compounds of the used methods	S11
Table S8 : Concentrations of the recovery experiments N-chloroglycine (FAC) for oxidation of vanillin or dimedone (100 μ M) with ClO ₂ , 5 mM phosphate buffer, pl 0.05, reaction time 30 min, room temperature	or the H 7 ± S12
Text S3: Depletion experiments	S12
Table S9: Composition of the indigotrisulfonate working solutions for the depleti	ion of
CIO ₂ and O ₃	S13

Results and Discussion

Figure S3: Chromatograms of 25 μ M p-benzoquinone (5 mM phosphate buffer pH 7 ± 0.05) (black), 60 μ M hydroquinone (5 mM phosphate buffer pH 7 ± 0.05) (red), 100 μ M hydroquinone (2 mM glycine and 5 mM phosphate buffer pH 7 ± 0.05) (green), 100 μ M hydroquinone oxidised with 100 μ M CIO2 (2 mM glycine and 5 mM phosphate buffer pH 7 ± 0.05) (blue) measured with HPLC-UV at wavelength 288 nm (99%/1% methanol/water pH 2 flow 0.5 mL/min) **S14**

Figure S4: Depletion of CIO_2 (80 μ M) in 5 mg DOC L⁻¹, 5 mM phosphate buffer and 0.8 mM glycine pH 7 ± 0.05 (no pre-ozonation (grey), 40 μ M pre-ozonated (red) and 80 μ M pre-ozonated (blue)), depletion was measured with the indigo method **S14**

Table S10: Reference values of yields of inorganic chlorine by-products per CIO_2 consumed for the reaction with CIO_2 with selected compounds**S15**

Figure S5: UV-Vis spectra of SRNOM (5 mg DOC L-1) with 5 mM phosphate buffer atpH 7 oxidized with different ozone (O_3) concentrations (0 μ M, 40 μ M and 80 μ M)(reaction time 30 min)S16

Material and Methods

Table S1: All used chemicals

Chemical	Molecular formula	Purity	Producer
Sodium dihydrogen	NaH ₂ PO ₄ *H ₂ O	99.0 - 102.0%	AppliChem GmbH
phosphate monohydrate			(Darmstadt, Germany)
Di-potassium hydrogen	K ₂ HPO ₄	min. 99%	AppliChem GmbH
phosphate anhydrous			(Darmstadt, Germany)
Sulfuric acid	H_2SO_4	> 95%	Fisher Scientific GmbH
Sodium hydroxide colution (1	NaOlu	Not ovoilable	(Schwerte, Germany)
Sodium hydroxide solution (1	NaOn	Not available	(Duisburg, Cormany)
Sodium chlorito	NaCIO	80%	Sigma Aldrich
Southin chiorite		00 /0	(Darmstadt Germany)
Potassium chlorate	KClO₂	≥ 99 0%	Sigma Aldrich
	1.0103	- 00.070	(Darmstadt, Germany)
Sodium persulfate	Na ₂ S ₂ O ₈	≥ 99.0%	Sigma Aldrich
-			(Darmstadt, Germany)
Potassium iodide	KI	99%	Thermo Fisher (Kandel)
			GmbH
			(Karlsruhe, Germany)
Sodium carbonate	Na ₂ CO ₃	≥ 99.5% p.a.	Die Carl Roth GmbH + Co.
			KG (Karlaruha Cormony)
Sodium chlorido	NaCl	> 00 5%	Rornd Kraft CmbH
Souldin chionde	Naci	2 99.070	(Duisburg, Germany)
Nitrogen	N ₂	> 99%	Air liquid
			(Oberhausen, Germany)
Argon	Ar	> 99%	Air liquid
			(Oberhausen, Germany)
Methanol	H₃COH	≥ 99.8%	VWR International GmbH
			(Darmstadt, Germany)
Hydrochloric acid	HCI	~ 37%	Fisher Scientific GmbH
Vanillin	<u> </u>	000/	(Schwerte, Germany)
vannin		99%	(Darmstadt Germany)
Indigo trisulfonic acid	CupH-KoNoOusSo	Ozone	Sigma Aldrich
tripotassium salt	01617131201103	scavenging	(Darmstadt, Germany)
		reagent	(2 a
Glycine	$C_2H_5NO_2$	≥ 99.0%	Sigma Aldrich
-			(Darmstadt, Germany)
Sodium hypochlorite	NaOCI	11 – 15%	Alfa Aesar
			(Germany)
Natural organic matter	Suwannee River	KU Isolate	International Humic
Hydroquinono	СНО	(2R101N)	Substances Society (IHSS)
Hydroquinone	$C_6 H_6 O_2$	2 99.0 %	(Darmstadt Germany)
Ammonium molybdate (para)	$(NH_4) \in MO_7O_{24} \times 4H_2O_{24}$	99 %	Alfa Aesar
tetrahydrate	((Karlsruhe, Germany)
TOC standard	Not available	(1000 ± 10) mg/L	Sigma Aldrich
			(Darmstadt, Germany)
Formic acid	CH ₂ O ₂	~ 98%	Sigma Aldrich
			(Darmstadt, Germany)
2-methoxybenzo-1,4-quinone	$C_7H_6O_3$	Not available	Sigma Aldrich
			(Darmstadt, Germany)

Table S2: All used instruments

Instrument	Component	Specification	Manufacturer
UV-VIS-	Hardware	UV-1800	Shimadzu
spectropnotometer			(Duisburg, Germany)
	Software	UVProbe	Shimadzu
			(Duisburg, Germany)
Oltra-pure water	-	Purelad Ultra	
	Democratic	Obies a devi	(Celle, Germany)
HPLC-UV	Degasser	Shimadzu	Shimadzu Europa GmbH
		DGU-20A _{5R}	(Duisburg, Germany)
	Hign pressure	Shimadzu Liquid	Shimadzu Europa GmbH
	Pump	LC-10AT VP	(Duisburg, Germany)
	Autosampler	Shimadzu Auto Injector	Shimadzu Europa GmbH
		SIL-10AD VP	(Duisburg, Germany)
	Detector	Shimadzu Diode Array	Shimadzu Europa GmbH
		Detector	(Duisburg, Germany)
		SPD-M10A VP	
	Column	5 µm EVO C18 100A;	Phenomenex
		100 x 2.1 mm (1 x ID)	(Aschaffenburg, Germany)
IC	Equipment	881 Compact IC pro	
	Pump	Standard	
	Autosampler	863 Compact	
	Detector	IC Conductivity detector	
		UV-Detector	
			Metrohm
	Column	Metrosep ASupp 7	(Filderstadt, Germany)
		(250/4.0)	
	Sample Loop	1 mL	
		Injection volume:	
		100 µL	
	Software	MagicIC Net	
Ozone generator	-	BMT 802X	BTM Messtechnik
			(Berlin, Germany)
Dispenser-system	-	Dispensette	Brand GMBH + CO KG
		207.111.1	(Wertheim, Germany)
pH-Meter	-	827 pH lab	Metrohm
700		TOOL	(Essen, Germany)
TOC analyser	Equipment	IOC-L	Shimadzu Europa GmbH
	Auto-sampler	ASI-L	(Duisburg, Germany)
	Software	TOC Control -L	

Table S3: All used methods

Compound	Instrument	Conditions
Chloride, chlorite, chlorate, formic acid	IC with conductivity detector Column: Metrohm A Supp 7 (250/4.0)	Eluent: 1.6 mM Na ₂ CO ₃ Flow: 0.8 mL min ⁻¹
,		Injection volume: 100 µL
<i>N</i> -chloroglycine	IC with post-column reaction and UV- detector	Post Column Reaction (PCR) 1. Potassium iodide (270 mM) 2. Ammonium molybdate (50 μM) and sulfuric acid (100 mM) Flow: 0.2 mL min ⁻¹ Injection volume: 100 μL
Vanillin,	HPLC with UV-detector	Mobile phase: isocratic
2-methoxybenzo-1,4-	Column: Kinetex 5 µm EVO C18 100	20% Methanol/80% H ₂ O pH 2
quinone	A 100 X 3 mm (Phenomenex)	(adjusted with HCI)
		Injection volume: 75 ul
		Wavelength: 347 nm
Hydroquinone,	HPLC with UV-detector	Mobile phase: isocratic
<i>p</i> -benzoquinone	Column: Kinetex 5 µm EVO C18 100	1% Methanol/99% H ₂ O (pH 2
	A 100 x 3 mm (Phenomenex)	(adjusted with HCI))
		FIOW: 0.5 ML MIN ⁻¹
		Wavelength: 288 nm
Indigotrisulfonate	UV-VIS-spectrometer	Wavelength: 600 nm
		Cuvette: 1 cm
		For checking the purity
		concentration was also calculated
		with the extinction coefficient of
		20000 M ⁻¹ cm ^{-1 1}

Reaction	<i>k</i> [M ⁻¹ s ⁻¹]	рН	Reference
glycine + HOCI	1.5 × 10 ⁵	7	2
glycine + CIO ₂	1 × 10 ⁻³	8	3
vanillin + ClO ₂	5×10^{3}	8	3
hydroquinone +CIO ₂	$(8.8 \pm 0.4) \times 10^5$	6.93	4
indigotrisulfonate + CIO ₂	2.5 × 10 ⁵	8	3
Dimedone + CIO ₂	~ 2 × 10 ⁴	2 - 5	3
galic acid + HOCI	$(1.5 \pm 0.1) \times 10^4$	7	5
hydroquinone + HOCI	21.6 ± 0.3	7	5

 Table S4:
 Reaction rate constants of used compounds at defined pH

Text S1: Production of CIO₂

(if available/applicable)

CIO₂ was produced by mixing sodium persulfate and sodium chlorite (reaction 1) (persulfate-chlorite method). This method was firstly described and performed by Gates (1998)⁶.

$$Na_2S_2O_8 + 2 NaClO_2 \rightarrow 2 ClO_2 + Na_2SO_4$$
 (reaction 1)

Figure S1 shows the experimental setup for the ClO₂ production. The principle of this setup is that ClO₂ is produced using the chlorite persulfate method combined with a purification step⁷. Therefore, five gas washing bottles connected *via* PE-tubes and a nitrogen-gas supply are needed. The empty bottle 1 is used for avoiding pressure effects after turning on/off gas supply, bottle 2 (ultrapure water) for washing the used nitrogen gas and in bottle 3 ClO₂ is produced according to reaction 1. Bottle 4 (NaClO₂) is used for scavenging FAC which might be formed during the production. ClO₂⁻ present in excess can scavenge FAC because it reacts with HOCl to ClO₂, H₂O and Cl⁻ in an acid catalysed reaction (*k* = 1.06 × 10⁶ M⁻² s⁻¹)⁸. In bottle 5 the produced ClO₂ is absorbed in ice cooled water. Before starting the production, all

bottles were cleaned with ultrapure water. First, bottle 2 and 5 were filled with 300 mL ultrapure water, bottle 4 was filled with 100 mL of $0.111 \text{ M} \text{ NaClO}_2$ solution and bottle 3 was filled with 100 mL of $0.885 \text{ M} \text{ NaClO}_2$ solution. For starting the reaction 100 mL of $0.168 \text{ M} \text{ Na}_2\text{S}_2\text{O}_8$ was added to bottle 3. During the production the reaction solution (bottle 3) was continuously stirred.

Figure S1: Experimental setup of CIO₂ production (modified from Terhalle et al.)⁷

The ClO₂ stock solution was stored dark and cool in brown glass conical shoulder bottles with minimum headspace.

Usage of CIO₂ solutions

 CIO_2 stock solution was kept cool in an ice bath throughout the whole experiment to suppress gas transfer losses of CIO_2 . The concentration of the produced CIO_2 stock solution (bottle 5) was measured via UV-VIS- spectrometry. Therefore, the stock solution was diluted 1:30 (100 µL stock solution and 2.9 mL ultrapure water) in a 1 cm cuvette and turned over carefully two times for mixing. To avoid losses of CIO_2 *via* headspace during dosage of CIO_2 , hamilton syringes were used. The dilution of the stock solution ensure that the absorbance was below 1 cm⁻¹ and therefore in the

linear range of the photometer. The absorbance of the diluted stock solutions at wavelength 359 nm was between 0.4 and 0.84 cm⁻¹ (1 –2.1 x 10⁻² M ClO₂). The concentrations were calculated with the extinction coefficient of ClO₂ ($\epsilon_{359 \text{ nm}} = 1200 \text{ M}^{-1} \text{ cm}^{-1}$)⁹ *via* the lambert-beer-law (equation S1).

$$E_{359nm} = \varepsilon_{359nm} \times c \times d \qquad (equation S1)$$

 $E_{359 nm}$: Extinction at 359 nm $\varepsilon_{359 nm}$: molar extinction coefficient for CIO₂ at 359 nm [M⁻¹ s⁻¹] *c*: concentration of CIO₂ [M] *d*: optical path length [cm] (in present work 1 cm)

Text S2: Production of O₃

 O_3 gas was produced with an BMT 802X ozone generator and purged in ice cooled ultrapure water. After about 1 – 2 hours purging, the concentration of O_3 was measured *via* a UV-Vis-spectrometer at wavelength of 258 nm ($\epsilon_{258 nm, O3} = 2950 \text{ M}^{-1} \text{ cm}^{-1}$)¹ and calculated with the lambert-beer law (see equation S1). Therefore, the O_3 stock solution was diluted 1:6 (2.5 mL ultrapure water and 0.5 mL O_3 stock solution) and was measured five times. In case the standard deviation of these measurements was > 5% the concentration of ozone in the stock solution may not be saturated and measurement was repeated at a later time. Transfer of O_3 stock solution was done by Hamilton syringes and the ozone gas was continuously bubbled into the stock solution to ensure that the ozone concentrations remains constant. The concentration of O_3 stock solution was measured near-term before each dosage.

Table S5: Composition and CIO_2 dosages of the investigated compounds for theoxidation experiments

Compound	Composition reaction solution	ClO ₂ dosages [µM]
Vanillin and hydroquinone	 100 µM compound 2 mM glycine 5 mM phosphate buffer pH 7 ± 0.05 	0, 25, 50, 75, 100, 150, 200
Indigotrisulfonate	 86 µM compound 2 mM glycine 5 mM phosphate buffer pH 7 ± 0.05 	0, 25, 50, 75, 100, 150, 200
Dimedone	 100 µM compound 2 mM glycine 5 mM phosphate buffer pH 7 ± 0.05 	0, 50, 100, 150, 200
SRNOM and pre-ozonated SRNOM (40 μ M O ₃)	 5 mg DOC L⁻¹ SRNOM 0.8 mM glycine (added after ozonation) 5 mM phosphate buffer pH 7 ± 0.05 	0, 15, 30, 40, 50, 60, 70, 80
Pre-ozonated SRNOM (80 μM O ₃)	 5 mg DOC L⁻¹ SRNOM 0.8 mM glycine (added after ozonation) 5 mM phosphate buffer pH 7 ± 0.05 	0, 15, 30, 40, 50, 60

Figure S2: Workflow of the oxidation experiments

Table	S6:	Reaction	time of	[:] the ir	nvestigated	com	pounds	with	
IGNIC	UU .	1 COUCION			nooligatoa	00111	poundo	VVICII	0.02

Compound	Reaction time with CIO ₂
SRNOM and pre-ozonated	90 min (15 μM ClO_2), 130 min (30 μM ClO_2), 170 min (40 μM
SRNOM (40 µM O ₃)	ClO_2), 210 min (50 μM ClO_2), 250 min (60 μM ClO_2), 290 min
	(70 μM ClO_2) and 330 min (80 μM ClO_2), reaction time is
	composed of 90 min plus the wait-time of the sample in the
	autosampler
Pre-ozonated SRNOM (80 μ M O ₃)	After 180 min the reaction was stopped by adding
	indigotrisulfonate
Vanillin, indigotrisulfonate and	at least 30 min
hydroquinone, dimedone	

Table S7: Limits of detection (LOD) and limits of quantification (LOQ) of themeasured compounds of the used methods

Compound	LOD [µM]	LOQ [µM]	Injection
			volume
CI	0.50	1.47	100 µL
CIO ₂ -	0.54	1.59	100 µL
CIO ₃ -	1.07	2.89	100 µL
N-Chloroglycine (FAC)	1.98	5.48	100 µL
Vanillin	1.85	5.33	75µL
Hydroquinone	0.16	0.49	75µL
Indigotrisulfonate	1.40	4.09	3 mL in 1 cm cuvette

Table S8: Concentrations of the recovery experiments *N*-chloroglycine (FAC) for the oxidation of vanillin or dimedone (100 μ M) with ClO₂, 5 mM phosphate buffer, pH 7 ± 0.05, reaction time 30 min, room temperature

Compound	[CIO ₂] [µM]	[Glycine] [mM]	[HOCI] [µM]	[Cl-gly] [µM]
	0	2	100	0
	0	20	100	0
	0	2	100	100
Vanillin	50	2	100	0
	50	20	0	0
	50	50 20 100		0
	50	2	0	100
	50	2	100	100
	0	0	0	100
	50	0	0	0
Dimedone	100	0	0	0
	150	0	0	0
	200	0	0	0

Text S3: Depletion experiments

Before the ClO₂ and O₃ was dosed, the dispenser was rinsed three times with the SRNOM solution and two reference sample (t = 0 s, before addition of 80 μ M ClO₂, 40 μ M or 80 μ M O₃) were taken. Then ClO₂ or O₃ was dosed and the solution was mixed for 10 seconds and following a predefined time protocol samples were taken by adding 10 mL of the sample into reaction tubes prefilled with small amounts (i.e. \leq 1 mL) of indigotrisulfonate working solution (c_{indigo} (sample + indigotrisulfonate)) = 1 × 10⁻⁴ M for ClO₂ depletion and 8.7 × 10⁻⁵ M and for O₃ depletion). The remaining indigotrisulfonate concentration was calculated by the lambert-beer-law using absorbance at 600 nm ($\epsilon_{600 \text{ nm, indigotrisulfonate}} = 20000 \text{ M}^{-1} \text{ cm}^{-1}$)¹. For the ClO₂ depletion the extinction factor was divided by factor 2 (= 10000 M⁻¹ cm⁻¹) because 2 mol ClO₂ are required to deplete one mol indigotrisulfonate. The amount of indigo dye bleaching was determined by subtracting oxidant containing samples from the average of the references (no oxidant).

Table S9: Composition of the indigotrisulfonate working solutions for the depletion of CIO_2 and O_3

Measured oxidant	Composition of indigo working solution				
CIO ₂	1 mM indigotrisulfonate				
	11 mM glycine				
	5 mM phosphate buffer				
	pH 7				
O ₃	1.25 mM indigotrisulfonate				
	65 mM H ₃ PO ₄				
	pH < 4				

Results and Discussion

Figure S3: Chromatograms of 25 μ M p-benzoquinone (5 mM phosphate buffer pH 7 ± 0.05) (black), 60 μ M hydroquinone (5 mM phosphate buffer pH 7 ± 0.05) (red), 100 μ M hydroquinone (2 mM glycine and 5 mM phosphate buffer pH 7 ± 0.05) (green), 100 μ M hydroquinone oxidised with 100 μ M CIO2 (2 mM glycine and 5 mM phosphate buffer pH 7 ± 0.05) (blue) measured with HPLC-UV at wavelength 288 nm (99%/1% methanol/water pH 2 flow 0.5 mL/min)

Figure S4: Depletion of ClO₂ (80 μ M) in 5 mg DOC L⁻¹, 5 mM phosphate buffer and 0.8 mM glycine pH 7 ± 0.05 (no pre-ozonation (grey), 40 μ M pre-ozonated (red) and 80 μ M pre-ozonated (blue)), depletion was measured with the indigo method

Table S10: Reference values of yields of inorganic chlorine by-products per CIO_2 consumed for the reaction with CIO_2 with selected compounds

Compound	Yields per CIO ₂ consumed	Conditions	Reference
Phenol	 60% CIO₂- 40% HOCI 	1 mM Compound pH 7 5 mM phosphate buffer 10 mM bromide	Terhalle et al. ⁷
Vanillic acid	• 50% CIO ₂ -	100 µM compound pH 7 2 mM phosphate buffer	Con et al ¹⁰
Hydroquinone	 80% ClO₂⁻ 	scavenging of HOCI after reaction	Gan et al."
Vanillyl alcohol	 5% ClO₂⁻ 20% Cl⁻ 70% ClO⁻ 	Pulp bleaching conditions	Ni et al. ¹¹
SRNOM	 71% - 82% CIO₂⁻ 22% - 25% FAC 1% - 15% CIO₃⁻ 	2 mgC L ⁻¹ SRNOM pH 6.5 – 8.1 10 mM phosphate buffer	Rouge et al. ¹²

Figure S5: UV-Vis spectra of SRNOM (5 mg DOC L⁻¹) with 5 mM phosphate buffer at pH 7 oxidized with different ozone (O₃) concentrations (0 μ M, 40 μ M and 80 μ M) (reaction time 30 min)

References

- 1. Hoigné, J.; Bader, H., Bestimmung von Ozon und Chlordioxid in Wasser mit der Indigomethode. *vom Wasser* **1980**, *55*, 261.
- Pattison, D. I.; Davies, M. J., Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds. *Chemical research in toxicology* 2001, *14* (10), 1453-1464.
- 3. Hoigné, J.; Bader, H., Kinetics of reactions of chlorine dioxide (OCIO) in water-I. Rate constants for inorganic and organic compounds. *Water Research* **1994**, *28* (1), 45-55.
- Wajon, J. E.; Rosenblatt, D. H.; Burrows, E. P., Oxidation of Phenol and Hydroquinone by Chlorine Dioxide. *Environmental Science and Technology* **1982**, *16* (7), 396-402.
- 5. Criquet, J.; Rodriguez, E. M.; Allard, S.; Wellauer, S.; Salhi, E.; Joll, C. A.; Von Gunten, U., Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts–Electrophilic aromatic substitution and oxidation. *Water research* **2015**, *85*, 476-486.
- 6. Gates, D. J., *Chlorine dioxide handbook*. AWWA: **1998**.
- Terhalle, J.; Kaiser, P.; Jütte, M.; Buss, J.; Yasar, S.; Marks, R.; Uhlmann, H.; Schmidt, T. C.; Lutze, H. V., Chlorine Dioxide - Pollutant Transformation and Formation of Hypochlorous Acid as a Secondary Oxidant. *Environmental Science and Technology* 2018, 52 (17), 9964-9971.
- Peintler, G.; Nagypal, I.; Epstein, I. R., Systematic design of chemical oscillators. 60.
 Kinetics and mechanism of the reaction between chlorite ion and hypochlorous acid.
 Journal of Physical Chemistry **1990**, *94* (7), 2954-2958.
- 9. Gates, D. J.; Ziglio, G.; Ozekin, K., *State of the science of chlorine dioxide in drinking water*. Water Research Foundation/Fondazione AMGA: 2009.
- Gan, W.; Huang, S.; Ge, Y.; Bond, T.; Westerhoff, P.; Zhai, J.; Yang, X., Chlorite formation during ClO₂ oxidation of model compounds having various functional groups and humic substances. *Water research* **2019**, *159*, 348-357.

- 11. Ni, Y.; Shen, X.; Van Heiningen, A., Studies on the reactions of phenolic and nonphenolic lignin model compounds with chlorine dioxide. *Journal of wood chemistry and technology* **1994**, *14* (2), 243-262.
- Rougé, V.; Allard, S.; Croue, J.-P.; von Gunten, U., *In-situ* formation of free chlorine during ClO₂ treatment: Implications on the formation of disinfection by-products. *Environmental science & technology* **2018**, *52*, 13421-13429.