Supplemental Material: Temperature sensitivity of nitrate removal in woodchip bioreactors increases with woodchip age and following drying-rewetting cycles

Bryan M. Maxwell^{1*}, Carolina Díaz-García¹, Juan José Martínez-Sánchez¹, François Birgand², José Álvarez-Rogel¹

¹Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain 30203

²North Carolina State University, Raleigh, North Carolina, USA 27695

Manuscript prepared for Environmental Science : Water Research and Technology

*Corresponding author

Telephone : +1 704 819 0460 ; E-mail : (bmmaxwel@gmail.com); Mailing Address : 10 N Scarlet

Elm Ct., Spring, Texas, 77382

Keywords: Woodchip bioreactor, carbon quality, denitrification, temperature sensitivity, drying-rewetting cycles

Supplemental Figure 1. Release of dissolved organic carbon (DOC) versus temperature in UPCT bioreactors for Days 30 - 395 (first year) and 365 - 730 (second year). Q₁₀ of DOC release decreased with time, and values of Q₁₀ were positive in both periods, showing that more DOC was released at higher temperatures.

Supplemental Figure 2. Tile plots illustrating uncertainty of the calculated Q_{10} values for the UPCT field bioreactors during Days 30 – 395 (first year, A) and 365 – 730 (second year, B). Each tile represents a separate Q_{10} value when subsetting the data at various intervals according to minimum temperature (x-axis) and range in temperature of the interval (y-axis). Numbers shown within each tile are the uncertainty of the Q_{10} value at the given interval. Uncertainty generally decreased as range in temperature of the interval increased.

Supplemental Figure 3. Release of dissolved organic carbon (DOC) versus temperature in NCSU bioreactors for Days 30 - 287 and 480 - 558. Q_{10} of DOC release decreased with time, and values of Q_{10} were positive in both periods, showing that more DOC was released at higher temperatures.