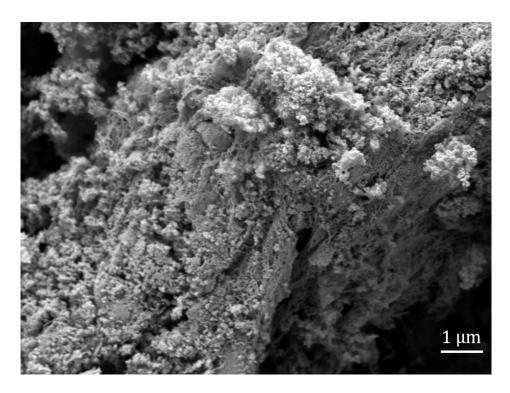
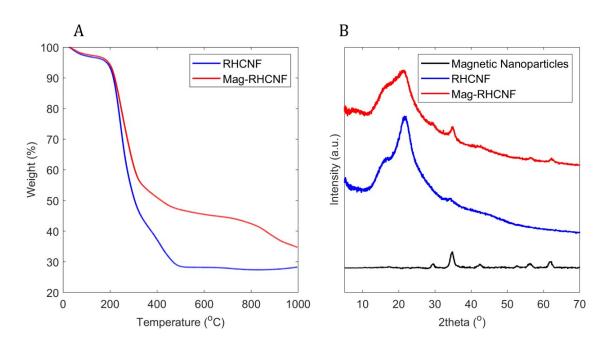

1	Supporting Information
2	Rice Husk Based Nanocellulose Scaffold for Highly Efficient Removal of
3	Heavy Metal Ions from Contaminated Water
4	Chengbo Zhan ^{1,2} , Priyanka R. Sharma ² , Hongrui He ² , Sunil K. Sharma ² ,
5	Alexis McCauley-Pearl ³ , Ruifu Wang ¹ , Benjamin S. Hsiao ^{2*}
6	
7	¹ Space Institute of Southern China, Shenzhen 518117, China
8	² Department of Chemistry, Stony Brook University, Stony Brook, NY11794-3400, United
9	States
10	³ Smithtown High School East, Saint James, NY 11780, United States
11	
12	
13	
14	
15	
16	
17	
18	* Corresponding author E-mail: benjamin.hsiao@stonybrook.edu; Tel: +1(631)632-7793


2 Figure S1. Separation of RHCNF gel after the metal ion adsorption. (A) Separation was carried
3 out by a commercial coffee filter brewer with 100-micron mesh size. (B) Separated gel (induced
4 by RHCNF and metal ion interactions) and permeant.

5

6

7 Figure S2. TEM image of magnetic nanoparticles prepared by the co-precipitation method.



1

- 2 Figure S3. SEM image of Mag-RHCNF composite. Magnetic particles were visible as the granular
- 3 particles adhered to the porous nanocellulose scaffold.

5

6 Figure S4. (A) TGA and (B) XRD profiles of RHCNF and Mag-RHCNF samples.

2 Figure S5. Demonstration of magnetic separation using Mag-RHCNF. (A) The initial suspension
3 of Mag-RHCNF, (B) a magnet was placed on the right side of the sample vial to attract Mag4 RHCNF.

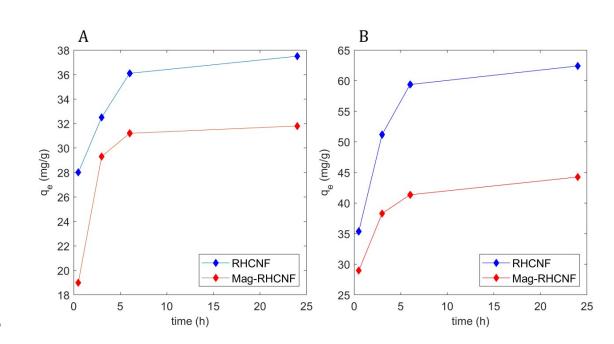


Figure S6. The adsorption kinetics of solid RHCNF and Mag-RHCNF samples for (A) LaCl₃ and
(B) Pb(OAc)₂ adsorption. All experiments were equilibrated for 24 h (i.e., the static adsorption test
was carried out for 24 h).

- 1 Table S1. The adsorption capacity of the RHCNF suspension for mixed solutions of La(III) and
- 2 Pb(II). The measurements were conducted at pH = 7, room temperature. The dosage of 0.12 wt%

Original La(III) Concentration (ppm)	Original Pb(II) Concentration (ppm)	Experimental adsorption capacity for La(III) (q_e , mg/g)	Experimental adsorption capacity for Pb(II) (q_e , mg/g)
50	50	17.7	19.2
125	125	23.1	51.3
250	250	36.7	69.2
500	500	39.2	104.1

3 RHCHF suspension was 2 mL.

4