Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Quaternary treatment with algae-assisted oxidation for antibiotics removal and

refractory organics degradation in livestock wastewater effluent

	Precursor	Product ion	Fragmentor	Collision	Polarity	Retention
Analyte	ion			energy		time
	(m/z)	(m/z)	(V)	(eV)		(min)
Amoxicillin	397.8	380.9 348.9	100	6 15	Positive	6.36
Ampicillin	381.8	332.9 106	100	15 20	Positive	7.53
Ceftiofur	523.7	240.9 209.7	150	15 20	Positive	9.64
Chlortetracycline	478.8	443.8 154	100	20 30	Positive	8.85
Clopidol	191.9	101 87	150	30 35	Positive	4.31
Enrofloxacin	359.9	341.9 316	150	20 15	Positive	7.66
Erythromycin	734.2	574.8 157.5	150	10 30	Positive	10.34
Florfenicol	355.7	335.8 184.9	100	4 15	Negative	9.47
Lincomycin	406.9	358.9 126	150	15 30	Positive	5.10
Oxytetracycline	460.9	442.9 425.8	90	10 15	Positive	6.93
Penicillin-G	334.9	175.9 160	200	10 15	Positive	10.81
Penicillin-V	351	192 159.9	100	55	Positive	11.56
Sulfadiazine	250.8	155.9 108	100	10 20	Positive	5.01
Sulfamethazine	278.9	185.9 155.9	100	15 15	Positive	7.55
Sulfamethoxazole	253.8	155.9 92	100	10 25	Positive	9.41
Sulfathiazole	255.8	155.9 108	100	10 20	Positive	5.91
Tetracycline	444.8	409.8 153.8	150	20 25	Positive	7.43
Tiamulin	494.1	192 118.9	150	20 40	Positive	11.49
Trimethoprim	290.9	229.9 123	150	20 25	Positive	6.53
Tylosin	916.1	771.9 174	200	25 37	Positive	10.72
Amoxicillin-d4	401.8	384.8 352.8	100	5 15	Positive	6.36
Florfenicol-d3	358.7	338.6 187.8	100	5 15	Negative	9.47
Sulfamethoxazole-d4	257.4	159.4 95.8	100	10 25	Positive	9.41

Table S1. LC-MS/MS	analysis	of selected	antibiotics.
--------------------	----------	-------------	--------------

Table S2. Limit of detection (LOD), limit of quantification (LOQ), relative recoveries, relative standard deviation (RSD) of recoveries, and correlation coefficients (R²) of calibration curves for antibiotics examined in this study.

Analyte	LOD	LOQ	Recovery	RSD	R ²
	$(\mu g L^{-1})$	$(\mu g L^{-1})$	(%)	(%)	
Amoxicillin	2.4478	7.7954	86.48	2.0853	0.999
Ampicillin	1.8591	5.9207	78.60	0.6864	0.996
Ceftiofur	1.9056	6.0687	100.89	5.5949	0.999
Chlortetracycline	1.0123	3.2239	96.81	3.2409	0.994
Clopidol	0.1537	0.4895	97.38	1.8539	0.998
Enrofloxacin	0.2490	0.7930	107.60	6.8056	0.998
Erythromycin	0.2042	0.6503	149.90	6.3993	0.999
Florfenicol	0.2900	0.9235	99.75	1.7638	0.999
Lincomycin	0.0565	0.1798	92.52	0.6704	0.999
Oxytetracycline	1.1001	3.5035	127.59	1.3126	0.990
Penicillin-G	1.6050	5.1114	98.84	4.7310	0.997
Penicillin-V	2.1200	6.751	97.76	7.1800	0.996
Sulfadiazine	1.3924	4.4343	108.21	7.9925	0.990
Sulfamethazine	0.4494	1.4311	85.98	1.9118	0.993
Sulfamethoxazole	0.3971	1.2646	95.62	2.9220	0.995
Sulfathiazole	1.8378	5.8530	101.89	2.6857	0.996
Tetracycline	1.0240	3.2600	106.66	2.0200	0.995
Tiamulin	0.3743	1.1919	83.62	8.3130	0.999
Trimethoprim	0.9678	3.0821	100.99	0.4675	0.999
Tylosin	0.0304	0.0968	80.97	5.5333	0.999

Fig. S1. Sample preparation (extraction and clean-up) procedure for LC-MS/MS analysis of selected antibiotics.

Fig. S2. The growth of algal biomass and the associated pH increase in livestock wastewater effluent. A microalga *Scenedesmus quadricauda* was incubated in the light for 48 h without supplemented CO_2 . The cell growth was measured by monitoring the optical density at 680 nm (OD680).

Fig. S3. Treatment of raw neutral (a–b) and algal-treated alkaline (c–d) livestock wastewater using two different methods (UVC Vs. UVC/H₂O₂). For UVC/H₂O₂, H₂O₂ was added to raw and algaltreated wastewater in a final concentration of 0.5 mM just before UVC irradiation (0, 500, 1000, and 2000 mJ cm⁻²). Fig. 3 in the main text was reconstructed here in terms of enrofloxacin, sulfadiazine, sulfamethoxazole, and sulfathiazole. The concentrations of enrofloxacin, sulfadiazine, sulfamethoxazole, and sulfathiazole decreased with increasing UVC dose, and the removal tendency of those antibiotics was relatively independent of the initial pH of the wastewater sample. The percent removals of selected antibiotics in panel (c) include the removal (nearly zero) achieved by algal-treatment.

Fig. S4. Treatment of raw and algal-treated livestock wastewater using two different methods (UVC Vs. UVC/H₂O₂). For UVC/H₂O₂, H₂O₂ was added to raw and algal-treated wastewater in a final concentration of 0.5 mM just before UVC irradiation (0, 500, 1000, and 2000 mJ cm⁻²). Fig. 3 in the main text was reconstructed here in terms of ceftiofur, penicillin-V, and tylosin. The total concentration of ceftiofur, penicillin-V, and tylosin in the raw wastewater was 26.4 μ g L⁻¹, which was effectively removed by all treatment methods proposed in this study. For UVC-based treatment of algal-treated wastewater, the percent removals of the selected antibiotics include the removal (95%) achieved by algal-treatment.

Fig. S5. Treatment of raw neutral (a) and algal-treated alkaline (b) livestock wastewater using two different methods (UVC Vs. UVC/H₂O₂). For UVC/H₂O₂, H₂O₂ was added to raw and algal-treated wastewater in a final concentration of 0.5 mM just before UVC irradiation (0, 500, 1000, and 2000 mJ cm⁻²). Fig. 3 in the main text was reconstructed here in terms of chlortetracycline, erythromycin, oxytetracycline, penicillin-G, tetracycline, and tiamulin. The antibiotics were resistant to both UVC and UVC/H₂O₂, but it could be easily removed by algal treatment alone. The percent removals in panel (b) include the removal (88%) achieved by algal-treatment prior to UVC-based treatment of livestock wastewater.

Fig. S6. The effects of ozonation on the removal of antibiotics from raw neutral (a) and algaltreated alkaline (b) livestock wastewater. The ozonation of raw and algal-treated livestock wastewater was carried out for up to 10 min (equivalent to ~1.8 mg-O₃/mg-C). Fig. 8a in the main text was reconstructed here in terms of clopidol, florfenicol, sulfadiazine, sulfamethazine, and sulfamethoxazole. The other antibiotics were not detected in the ozonated wastewater.