Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting information 1 2 Electrochemical degradation of perfluorinated compounds by 3 Ag coated Ti (Ti/Ag) anode: Toward the electrode preparation, 4 characterization and application 5 6 Jiawei Tang¹, Zong Liu¹, Wenjing Lu¹, Liangliang Wang^{1,2} Chunhui Zhang^{1,*}, Peidong 7 Su ^{2, **} 8 9¹ School of Chemical & Environmental Engineering, China University of Mining & 10 Technology (Beijing), Beijing 100083, China 11 ² Environmental Protection Research Institute of Light Industry, Beijing, 100095, China 12³ College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 13 518060, China. 14 15 * Corresponding author: Room 607, Yifu Science & Research Building, Ding 11 Xueyuan 16 Road, 100083, Beijing, China. Tel/fax: +86 10 6233 9331; Chunhui Zhang, Email: 17 ZCHcumtb@hotmail.com (C. Zhang); 18 ** Peidong Su, Email: spd1194042797@gmail.com (P. Su).

19 This Supporting material contains the detailed information including 3 tables and 9 figures

20 that are presented as follows.

21 Table S1

22 BBD experimental design matrix along with the experimental response.

Factor	Symbol	Unit			Level	
			-1 (Lo	w)	0 (Central)	+1 (High)
рН	X1	/	4		7	10
Current density	X_2	mA/cm ²	5		15	25
Distance	X ₃	mm	8		16	24
Electrolysis time	X_4	min	30		75	120
Run		Fact	or		Actual value	Predicted value
	X ₁	X ₂	X ₃	X_4	(%)	(%)
1	7	5	24	75	50.6	53.68
2	4	15	16	30	33.2	35.15
3	7	15	24	30	32.8	33.67
4	7	15	24	120	80.0	77.22
5	10	15	8	75	69.6	68.63
6	7	5	8	75	51.2	54.03
7	10	15	24	75	68.3	68.32
8	4	5	16	75	54.6	56.16
9	4	15	8	75	77.4	75.32
10	7	5	16	30	28.1	21.71
11	7	15	16	75	74.9	74.90
12	7	25	16	30	34.8	34.89
13	4	25	16	75	78.9	77.19
14	10	5	16	75	48.7	49.76
15	7	25	8	75	79.0	78.62
16	7	25	24	75	74.6	74.47
17	7	15	8	30	33.9	36.02
18	7	15	16	75	74.9	74.90
19	7	15	16	75	74.9	74.90
20	10	15	16	120	73.1	73.85
21	10	25	16	75	76.3	74.09
22	7	5	16	120	57.8	55.66

23	4	15	24	75	72.2	71.13
24	7	15	8	120	80.9	79.38
25	7	15	16	75	74.9	74.90
26	4	15	16	120	79.6	80.95
27	10	15	16	30	31.4	32.75
28	7	25	16	120	83.5	87.84
29	7	15	16	75	74.9	74.90

24 Table S2

25 ANOVA table for model to predict PFCs% removal by Ti/Ag anode using BBD.

Source of	Sum of squares	Df [#]	Mean square	F-Value	P-value
variation					
Model	9429.77	14	673.555	76.62016	< 0.001
X_1	67.6875	1	67.6875	7.699782	0.01490
X ₂ (Significant)	1543.601	1	1543.601	175.5921	< 0.001
X ₃	15.1875	1	15.1875	1.727652	0.20983
X ₄ (Significant)	5663.708	1	5663.708	644.2742	< 0.001
X_1X_2	2.7225	1	2.7225	0.309698	0.58665
X_1X_3	3.8025	1	3.8025	0.432553	0.52140
X_1X_4	5.5225	1	5.5225	0.628211	0.44123
X_2X_3	3.61	1	3.61	0.410655	0.53198
X_2X_4	90.25	1	90.25	10.26638	0.00636
X_3X_4	0.01	1	0.01	0.001138	0.97357
X_{1}^{2}	39.73378	1	39.73378	4.519911	0.05177
X_{2}^{2}	428.2095	1	428.2095	48.71091	< 0.001
X_{3}^{2}	16.09054	1	16.09054	1.830377	0.19752
X_4^2	1819.865	1	1819.865	207.0185	< 0.001
Residual	123.0717	14	8.790833		
Lack of Fit	123.0717	10	12.30717		
Pure Error	0	4	0		
Cor Total	9552.842	28			

26 #:_Degree of freedom.

27

29 Table S3

 $30 \quad {\rm Quality \ of \ the \ quadratic \ model \ based \ on \ R^2 \ and \ the \ standard \ deviation \ for \ the \ PFCs \ removal}$

Quadratic Summary Statistics	
Responce	P% (PFCs removal)
Standard Deviation (S.D.)	2.96
Coefficient of Variation (CV%)	4.71
Mean	62.93
Predicted residual error sum of squares	708.89
Pred R-Squared (R ² _{Pred})	0.9258
Adj R-Squared (R ² Adj)	0.9742
R-Squared (R ²)	0.9897
Adequate precision (AP)	31.014

31

33 Figure:

Figure S1. Physical drawings of Ti and Ti/Ag electrodes

Tafel (c) of Ti/Ag anode analysis (vs. SCE)

Figure S6. Removal efficiency of PFCs by Ti and Ti/Ag electrodes under optimal
parameters (pH: 6, current density 20: mA/cm², electrode distance: 1.6 cm)

Figure S7. Removal efficiency of COD at different recycling numbers

Figure S8. Effect of electrolysis time on PFCAs concentration change

Figure S9. HPLC-MS/MS spectra for PFASs electrocatalyzed on the Ti/Ag anode after
electrolysis of 90 min.