Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2020

Supplementary data

Simple preparation method for Styrofoam-TiO₂ composites and their photocatalytic application for dye oxidation and Cr(VI) reduction in industrial wastewater

Youn-Jun Lee^a, Chang-Gu Lee^{a,*}, Jin-Kyu Kang^b, Seong-Jik Park^c, Pedro J.J. Alvarez^d

^a Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea

^b Environmental Functional Materials and Water Treatment Laboratory, Seoul National University, Seoul, Republic of Korea

^c Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, Republic of Korea

^d Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States of America

* Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, South Korea. Tel.: +82 31

219 2405.

E-mail: changgu@ajou.ac.kr (C.-G. Lee)

Fig. S1. Procedure for the production of W-TiEPS from the wasted expanded polystyrene in a fishing net float.

Fig. S2. Size comparison of EPS-TiO₂ composites (n = 30) prepared in solutions containing different volume percentages of acetone (v/v): (a) pristine EPS balls, (b) 10%, (c) 30%, (d) 50%, (e) 70%, and (f) 90%.

Fig. S3. Effect of stirring time using diluted solvent on the photocatalytic activity of EPS-TiO₂ composites. Photocatalytic experimental conditions: initial dye concentration = 5 μ M; catalyst dose: 1.6 g/L; irradiation time = 60 min; light intensity = 3.93 × 10⁻⁹ einstein/cm²/s. Data are plotted as mean of replicates and error bars represent range of observed values.

Fig. S4. FE-SEM image (\times 30) of EPS-TiO₂ composite prepared using a diluted solvent containing 90% (v/v) acetone and 4% (w/v) TiO₂.

Fig. S5. (a) Surface SEM image (× 250), (b) elemental analysis by EDS, and EDS mappings of (c) C and (d) O of a pristine EPS ball.

Fig. S6. EPS-TiO₂ composite prepared using a diluted solvent containing 90% (v/v) acetone and 4% (w/v) TiO₂: (a) surface SEM image (× 250), (b) elemental analysis by EDS, and EDS mappings of (c) C, (d) O, and (e) Ti.

Fig. S7. TGA analysis of the EPS-TiO₂ composite prepared using a diluted solvent containing 90% (v/v) acetone and 4% (w/v) TiO₂.

Fig. S8. XRD patterns of the pristine EPS and EPS-TiO₂ composite.

Fig. S9. Change in (a) UV-Vis spectrum of methylene blue and (b) TOC during photocatalytic removal of methylene blue dye. Photocatalytic experimental conditions: initial dye concentration = 5 μ M; catalyst dose: 1.6 g/L; light intensity = 3.93 × 10⁻⁹ einstein/cm²/s. Data are plotted as mean of replicates and error bars represent range of observed values.

Fig. S10. (a) Cr(VI) removal by W-TiEPS under dark and UV irradiation in the presence of citric acid; (b) Photocatalytic reduction of Cr(VI) by W-TiEPS under UV irradiation during 5 reuse cycles (initial Cr(VI) concentration = 8.442 mg/L; catalyst dose: 2.0 g/L; citric acid concentration = 0.4 mM; light intensity = 3.93 × 10⁻⁹ einstein/cm²/s). Data are plotted as mean of replicates and error bars represent range of observed values.

Fig. S11. Cr(VI) and Cr(III) concentration by W-TiEPS under UV irradiation

Fig. S12. Chromium speciation as a function of solution pH under experimental conditions simulated with visual MINTEQ 3.0

Table S1

Total Cr	Cr(VI)	Cu^{2+}	Ni ²⁺	Fe ²⁺	Ca ²⁺
(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
1187.37	844.20	11.22	32.74	4.54	31.55
Cl-	NO ₃ -	SO4 ²⁻	PO ₄ ³⁻	pН	DOC
(mg/L)	(mg/L)	(mg/L)	(mg/L)	(-)	(mg/L)
567.95	639.79	2920.08	585.42	1.93	47.85

Chemical composition of industrial Cr(VI) plating wastewater.