Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2020

Algae-laden water treatment with ultrafiltration: effects of moderate oxidation by Fe(II)/permanganate on hydraulically irreversible fouling and deposition of iron and

manganese oxides

Supplementary information

Fangshu Qu^{a,b}, Zhimeng Yang^a, Huarong Yu^{a,b,*}, Hong Zhou^a, Gongduan Fan^c, Junguo He^{a,b}, Hongwei Rong^{a,b,**}

^a Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou,

510006, P.R. China

^b College of Civil Engineering, Guangzhou University, Guangzhou, 510006, P.R. China

^c College of Civil Engineering, Fuzhou University, Fuzhou, 350116, China

1. Composition of the BG11 medium

Chemicals	Concentration
	(mg/L)
NaNO ₃	1500.00
K ₂ HPO ₄	40.00
MgSO ₄ .7H ₂ O	75.00
CaCl ₂ . 2H ₂ O	36.00
Citric acid	6.00
Ammonium ferric citrate	6.00
EDTANa ₂	1.00
Na ₂ CO ₃	20.00
H ₃ BO ₃	2.86
MnCl ₂ .4H ₂ O	1.86
Na ₂ MoO ₄ .2H ₂ O	0.22
CuSO ₄ .5H ₂ O	0.08
Co(NO ₃) ₂ .6H ₂ O	0.05

Table S1 Ingredients of BG-11 medium

2. Preparation of algae-laden water

The algae-laden water was prepared via four steps. Firstly, the concentration of the harvested algae suspension was determined using a blood counting chamber. Secondly, the absorbance of algae suspension was measured in a visible spectrum range (400-700 nm) and a characteristic absorbance peak was found at a wavelength of 685 nm. Thirdly, a calibration between cell concentration and optical density at 685 nm (OD₆₈₅) was established (Fig. R1(a)). Finally, the dilution factor can be calculated with the initial algae solution and the objective algae solution (2.0×10^6 cells mL⁻¹).

Fig. S1 Absorbance spectrum of algae suspension (a) and calibration of algae concentration and OD₆₈₅ (b)

3. Effects of permanganate doses on the membrane fouling during filtration of the algae-laden water

Fig.S2 Effects of permanganate doses on the membrane fouling during filtration of the algae-laden water: Flux decline (a) and fouling resistances (b)

4. Effects of Fe(II) doses on the membrane fouling during filtration of the algae-laden water:

Fig. S3 Effects of Fe(II) doses on the membrane fouling during filtration of the algae-laden water: (a) Flux decline and (b) fouling resistances

5. EDS spectra of the membranes fouled during the algae-laden water

Fig. 4 EDS spectra of the membranes fouled by the algae-laden water: (a) untreated , (b) permanganate only (c) Fe(II) only and (d) Fe(II)/permanganate. 1, 2 and 3 represent the fouled membrane, the physical cleaned membrane and the chemically cleaned membrane. The doses of Mn(V) and Fe(II) were 50 µmol and 150 µmol, respectively.

6. Fluorescent EEM spectra of UF permeate at increasing doses of permanganate and Fe(II) /UF

Fig.S5 Fluorescent EEM spectra of UF permeate in the treatment of algae-laden water with hybrid processes: (a) permanganate oxidation, (b) Fe(II) coagulation and (c) Fe(II)/ permanganate. For permanganate, 1, 2, 3, 4 represent 10, 20, 30 and 40 µmol, respectively. For Fe(II), 1, 2, 3, 4 represent 30, 60, 90 and 120 µmol, respectively.