Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2020

Supplementary material Fabrication of amino functionalized benzene-1,4-dicarboxylic acid facilitated cerium based metal organic frameworks for efficient removal of fluoride from water environment Antonysamy Jeyaseelan¹, Mu. Naushad^{2,3}, Tansir Ahamad², Natrayasamy Viswanathan^{1*} ¹Department of Chemistry, Anna University, University College of Engineering - Dindigul, Dindigul – 624 622, Tamilnadu, India. ²Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Saudi 8 Arabia. ³Yonsei Frontier Lab, Yonsei University, Seoul, Korea. Corresponding author. Tel.: +91-451-2554066 (O); fax: +91-451-2554066. E-mail address: drnviswanathan@gmail.com (N. Viswanathan) **S**1

41 Fig. S2. Fluoride adsorption isotherms (C_e vs q_e) of (a-c) Ce@BDC MOFs at 303, 313 and 323
42 K and (d-f) Ce@ABDC MOFs at 303, 313 and 323 K.

S3

Fig. S3. The linear plots of (a) Fruendlich; (b) Langmuir; (c) Dubinin-Raduskevich adsorption
isotherm models of Ce@BDC MOFs towards fluoride adsorption at 303, 313 and 323 K; The
linear plots of (d) Fruendlich; (e) Langmuir; (f) Dubinin-Raduskevich adsorption isotherm
models of Ce@ABDC MOFs towards fluoride adsorption at 303, 313 and 323 K.

Fig. S4. Kinetic linear plots of (a) pseudo-first-order; (b) pseudo-second-order kinetic models;
(c) particle diffusion and (d) intraparticle diffusion model of the Ce@BDC MOFs towards
defluoridation at 303, 313 and 323 K.

81 Fig. S5. Kinetic linear plots of (a) pseudo-first-order; (b) pseudo-second-order kinetic models;

82 (c) particle diffusion and (d) intraparticle diffusion model of the Ce@ABDC MOFs towards
83 defluoridation at 303, 313 and 323K.

93 Table S1. Kinetic studies of Ce@BDC MOFs towards defluoridation.

Kinetic models	Parameters	303 K					313	K		323 K				
		8	10	12	14	8	10	12	14	8	10	12	14	
		mg/L												
Pseudo- first- order	k _{ad} (min ⁻¹)	0.105	0.112	0.121	0.128	0.109	0.118	0.124	0.131	0.113	0.121	0.129	0.135	
	r	0.885	0.892	0.900	0.909	0.888	0.896	0.904	0.913	0.892	0.899	0.906	0.917	
	sd	0.318	0.324	0.329	0.333	0.320	0.327	0.332	0.337	0.324	0.330	0.335	0.340	
Pseudo- second- order	$q_e(mg g^{-1})$	4.950	4.954	4.957	4.960	4.952	4.957	4.968	4.972	4.953	4.959	4.961	4.973	
	k (g mg-1 min-1)	0.295	0.301	0.310	0.316	0.298	0.305	0.313	0.320	0.300	0.308	0.316	0.323	
	h (mg g ⁻¹ min ⁻¹)	2.238	2.243	2.248	2.252	2.241	2.246	2.250	2.255	2.444	2.248	2.253	2.259	
	r	0.975	0.981	0.988	0.992	0.978	0.983	0.990	0.993	0.980	0.985	0.992	0.995	
	sd	0.134	0.139	0.146	0.153	0.138	0.142	0.150	0.156	0.141	0.146	0.153	0.159	
Particle diffusion	k _p (min ⁻¹)	0.208	0.215	0.222	0.228	0.212	0.219	0.226	0.231	0.216	0.222	0.229	0.234	
	r	0.866	0.873	0.877	0.882	0.870	0.875	0.880	0.886	0.872	0.879	0.883	0.890	
	sd	0.408	0.413	0.419	0.423	0.411	0.417	0.421	0.426	0.413	0.420	0.424	0.430	
Intra particle diffusion	$k_i(mg g^{-1} min^{0.5})$	1.124	1.135	1.142	1.149	1.129	1.138	1.146	1.154	1.133	1.142	1.150	1.157	
	r	0.954	0.963	0.969	0.975	0.959	0.966	0.973	0.978	0.963	0.971	0.977	0.983	
	sd	0.128	0.135	0.142	0.148	0.133	0.139	0.146	0.152	0.137	0.142	0.149	0.157	

S7

99

Kinetic models	Parameters	303 K					313	K		323 K				
		8	10	12	14	8	10	12	14	8	10	12	14	
		mg/L												
Pseudo- first-order	$k_{ad}(min^{-1})$	0.124	0.132	0.139	0.146	0.127	0.136	0.143	0.155	0.132	0.141	0.148	0162	
	r	0.928	0.937	0.943	0.949	0.932	0.940	0.946	0.952	0.935	0.943	0.949	0.955	
	sd	0.346	0.351	0.355	0.359	0.348	0.354	0.357	0.363	0.351	0.356	0.361	0.366	
Pseudo- second- order	$q_e(mg g^{-1})$	4.913	4.918	4.921	4.923	4.915	4.920	4.922	4.925	4.917	4.921	4.924	4.928	
	k (g mg ⁻¹ min ⁻¹)	0.412	0.423	0.431	0.439	0.417	0.426	0.434	0.442	0.421	0.429	0.437	0.446	
	h (mg g ⁻¹ min ⁻¹)	2.375	2.384	2.389	2.396	2.379	2.387	2.392	2.401	2.383	2.391	2.396	2.405	
	r	0.978	0.982	0.987	0.993	0.981	0.985	0.988	0.995	0.984	0.987	0.991	0.997	
	sd	0.139	0.144	0.149	0.152	0.141	0.146	0.151	0.155	0.144	0.148	0.154	0.198	
Particle diffusion	k _p (min ⁻¹)	0.194	0.201	0.207	0.214	0.198	0.205	0.211	0.219	0.201	0.209	0.214	0.222	
	r	0.915	0.925	0.934	0.942	0.918	0.929	0.937	0.946	0.922	0.931	0.940	0.949	
	sd	0.410	0.414	0.418	0.422	0.412	0.417	0.420	0.425	0.415	0.419	0.423	0.429	
Intra particle diffusion	$k_i(mg g^{-1} min^{0.5})$	1.758	1.765	1.771	1.776	1.762	1.768	1.774	1.779	1.765	1.771	1.776	1.781	
	r	0.981	0.986	0.990	0.994	0.983	0.988	0.993	0.996	0.987	0.991	0.995	0.998	
	sd	0.125	0.138	0.142	0.145	0.129	0.141	0.144	0.147	0.131	0.142	0.146	0.149	

100

S8