Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

2

1

3 Correlation between the feed composition and membrane wetting in a direct

4 contact membrane distillation process

- 5
- 6 Joowan Lim,^a Kwang Pyo Son,^a Seung Mo Kang,^a Jeongwon Park,^a Sojin Min,^a Hyeongrak
- 7 Cho,^b Seung-Hyun Kim,^c Sangho Lee,^b Soryong Chae^d and Pyung-Kyu Park^{a,*}

8

- 9 a Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju,
- 10 Gangwon-do 26493, Republic of Korea.
- ¹¹ ^b School of Civil and Environmental Engineering, Kookmin University, 77 Jeongneung-ro,
- 12 Seoul 02707, Republic of Korea
- 13 ° Civil Engineering Department, Kyungnam University, 7 Gyeongnamdaehak-ro, Changwon,
- 14 Gyeongsangnam-do 51767, Republic of Korea
- 15 ^d Department of Chemical and Environmental Engineering, University of Cincinnati, 2901
- 16 Woodside Drive, Cincinnati, OH 45221, USA
- 17
- 18
- 19
- 20 *Corresponding author: Pyung-Kyu Park
- 21 Tel.: +82-33-760-2890; E-mail: pkpark@yonsei.ac.kr

Feed solutions	Additional compounds to the background solution	Time [d]	
Background	-	1.60	
solution*	-	1.52	
_	CaCl ₂ 1000 ppm + MgSO ₄ 1000 ppm	1.14	
Inorganics in the background solution	$CaCl_2 2000 \text{ ppm} + MgSO_4 2000 \text{ ppm}$	0.96	
	$CaCl_2 4000 \text{ ppm} + MgSO_4 4000 \text{ ppm}$	0.75	
	HA 50 mg C/L	_** _	
	HA 100 mg C/L	**	
	O-HA (1 h) 50 mg C/L	0.94	
Organics in the background _	O-HA (1 h) 100 mg C/L	0.47	
solution	O-HA (2 h) 50 mg C/L	0.66	
_	O-HA (2 h) 100 mg C/L	0.47	
	O-HA (3 h) 50 mg C/L	0.29	
	O-HA (3 h) 100 mg C/L	0.27	

23 Table S1. Operation time until distillate conductivity reached 50 µS/cm

²⁴ * The background solution consisted of 50,000 ppm NaCl, 200 ppm NaHCO₃, and 10 ppm SDS.

25 ** Distillate conductivity did not reach 50 μ S/cm until operation was ceased in 2 days.

26	Table S2.	Turbidity	of the feed	solutions	containing	CaCl ₂ a	and MgSO ₄

	Additional compounds to the background solution*	Turbidity [NTU]
	$CaCl_2$ 1000 ppm + MgSO ₄ 1000 ppm	15.1
Feed solutions	$CaCl_2 2000 \text{ ppm} + MgSO_4 2000 \text{ ppm}$	44.7
	CaCl ₂ 4000 ppm + MgSO ₄ 4000 ppm	71.6

27 * The background solution consisted of 50,000 ppm NaCl, 200 ppm NaHCO₃, and 10 ppm SDS.

29 Figure S1. Schematic diagram of the device used for the LEP measurements.

Element	K ratio	wt%
С	0.39944	71.07
F	0.11773	28.93
Total		100.00
	(a)	

2	7
3	1

38	Element	K ratio	wt%
30	0	0.00301	32.65
57	Na	0.00018	0.58
40	Mg	0.00001	0.03
41	S	0.00012	0.21
42	Cl	0.00115	1.98
42	Ca	0.03895	64.56
43	Total		100.01
44		(b)	

Figure S2. SEM-EDX data of (a) a virgin membrane and (b) the distillate-side wetted
surface of the membrane sampled after operation with the feed solution containing both
2000 ppm CaCl₂ and 2000 ppm MgSO₄.

Figure S3. Images of the distillate side of the membrane taken after the occurrence of
membrane wetting during the MD operation with the feed solution containing both 1000
ppm CaCl₂ and 1000 ppm MgSO₄ in the background solution: (a) non-wetted surface and
(b) wetted surface.

59 Figure S4. MALDI-TOF data of (a) HAs and (b) O-HAs ozonated for 2 h.

61

62 Figure S5. Distillate flux and conductivity during the MD operation with (a) background

63 solution and (b) the feed solution containing 100 mg C/L of HAs.

64

67 Figure S6. Pore size distribution of virgin membrane and the membranes sampled after

