Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2020

Supplementary information

Molecular motion in the nanospace of MOFs upon gas adsorption investigated by in situ Raman spectroscopy

Shinpei Kusaka,^a Yasuaki Nakajima,^a Akihiro Hori,^a Akira Yonezu,^a Kenta Kikushima,^a Wataru Kosaka,^b Yunsheng Ma^c and Ryotaro Matsuda^{*ad}

- a. Department of Chemistry and Biotechnology, School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
- Institute for Materials Research, Tohoku University,2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
- c. School of Chemistry and Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, PR China.
- d. Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.

*To whom correspondence should be addressed: ryotaro.matsuda@chembio.nagoya-u.ac.jp

General Procedures and Materials

General Procedures

The powder X-ray diffraction patterns (PXRD) measurements were carried out on a Rigaku MiniFlex600 using a Cu K α radiation ($\lambda = 1.5406$ Å) with a scan rate of 10 degree/min at room temperature.

Simulated powder patterns from single-crystal X-ray diffraction data were generated using Mercury 1.4.1 software.

 N_2 adsorption measurements at 77 K were performed with BELSORP-mini (MicrotracBEL corp.). A sample was heated at 120 °C under vacuum for 6 h prior to the measurements.

Materials

 $Cu(HCOO)_2 \cdot 4H_2O$ and toluene were purchased from FUJIFILM Wako Pure Chemical Corp., 1,4benzenedicarboxylic acid (H₂bdc) and 1,4-diazabicyclo[2.2.2]octane (dabco) were from Tokyo Chemical Industry, methanol (MeOH) was from Nacalai Tesque and formic acid was from Kanto Chemical Co., Inc..

Fig. S1. PXRD patterns of MIL-140A (black: simulated, red: experimental)

Fig. S2. PXRD patterns of Cu-JAST-1 (black: simulated, red: experimental), Cu-JAST-1D (blue: experimental) and Cu-JAST-5 (green: experimental)

Fig. S3. Thermogravimetric analysis curves for Cu-JAST-1 (red), Cu-JAST-1D (blue) and Cu-JAST-5 (green)

Fig. S4. Raman spectrum of MIL-140A.

Figure S5. Temperature dependent Raman spectra of MIL-140 A of low frequency region under (a) He (b) Ar (c) N_2 (d) CO₂ at 100 K. The peak intensity was normalized using the peak at 800 cm⁻¹ as the standard.

gure S6. Temperature dependent Raman spectra of Cu-JAST-1 of low frequency region under (a) He (b) Ar (c) N_2 (d) O_2 (e) CO_2 at 100 KPa. The peak intensity was normalized using the peak at 450 cm⁻¹ as the standard.

Fig. S7. Temperature dependent Raman peak intensity for the libration mode in MIL-140A

Fig. S8. Temperature dependent Raman peak intensity for the libration mode in Cu-JAST-1

Fig. S9. Raman spectra for CO₂ in (a) solid and (b) gas phases.

Fig. S10. Raman spectra of (a) MIL-140A and (b) Cu-JAST-1 under each gas at 100 kPa

	Reported	This work
N ₂	1.998 ^{S1}	1.987
O ₂	1.438 ^{S2}	1.436
CO ₂	0.3915 ⁸³	0.3896

Table S1. Experimental values of rotational constants for each gas.

References

- S1. P. Stoicheff, Can. J. Phys., 1954, 32, 630.
- S2. G. Rouille, G. Millot, R. Saint-Loup and H. Berger, J. Mol. Spectrosc., 1992, 154, 372.
- S3. G. Herzberg and L. Herzberg, J. Opt. Soc. Am., 1953, 43, 1037.