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We wish to include our dispersion energy in a self-consistent framework. For this we need the functional
derivative of the dispersion energy w.r.t. the densities ρA, ρB . We work by implicit differentiation in
the basis of the original “atomic” dispersals b̃i(r). Our final bi(r) are related to the “atomic” dispersals
b̃i(r) by a transformation,

bp(r) =
∑
i

Bipb̃i(r), (1)

where the matrix B is obtained from solving the generalized eigenvalue problem,∑
j

τ̃kjBji = τi
∑
j

S̃kjBji ∀ i, k, (2)

where the matrices τ̃ and S̃ are the matrices of equations 24 b-c in the article, expressed in the “atomic”
dispersal basis. In the final expression of the energy, there is a dependence on the eigenvalues τi in the
denominator, as well as a dependence on the eigenvectors ~Bi in the numerator via wpq, since,

wpq =
∑
ij

BAipw̃ijB
B
jq, (3)

where again the matrix w̃ is that of equation 24a of the article expressed in the “atomic” dispersal basis.
We obtain the derivatives of the eigenvalues and eigenvectors via the usual implicit differentiation. For
the eigenvalues and eigenvectors, respectively, we obtain the standard expressions,

δτp
δρ(r)

=
∑
ij

Bip
δτ̃ij
δρ(r)

Bjp − τp
∑
ij

Bip
δS̃ij
δρ(r)

Bjp, (4)

δBip
δρ(r)

= −1

2
Bip

∑
jk

Bjp
δS̃jk
δρ(r)

Bkp +
∑
r 6=p,jk

1

τp − τr

(
Bjr

δ ˜τjk
δρ(r)

Bkp − τpBjr
δS̃jk
δρ(r)

Bkp

)
Bir. (5)

Care must be taken with the factor 1
(τp−τr) , since it will diverge in the case of true degeneracy (e.g.

when working in spherical symmetry) and will be numerically unstable in the case of near degeneracy.
However, in the final expressions we manage to remove these contributions. The functional derivatives
of τ̃ , S̃ and w̃ are given by,

δτ̃ij
δρ(r)

= ∇b̃i(r) · ∇b̃j(r), (6)

δS̃ij
δρ(r)

=b̃i(r)

(
b̃j(r) +

∫
dr′hxc(r, r

′)b̃j(r
′)

)
+

∫
dr′ρ(r′)b̃i(r

′)

∫
dr′′

δhxc(r
′, r′′)

δρ(r)
b̃j(r

′′), (7)

δw̃ij
δρA(r)

=

∫
dr1Bwdisp(r, r1B )ρB(r1B )

(
b̃Ai (r) +

∫
dr2Ah

A
xc(r, r2A)b̃Ai (r2A)

)
(8)(

b̃Bj (r1B ) +

∫
dr2Bh

B
xc(r1B , r2B )b̃Bj (r2B )

)
+

∫
dr1Adr1Bwdisp(r1A , r1B )ρA(r1A)ρB(r1B )

∫
dr2A

δhAxc(r1A , r2A)

δρA(r)
b̃Ai (r2A)(

b̃Bj (r1B ) +

∫
dr2Bh

B
xc(r1B , r2B )b̃Bj (r2B )

)
.
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The functional derivatives of S̃ij and w̃ij can be rewritten in terms of the xc-hole projected dispersals
(see main article) and can be further simplified by introducing the exchange-correlation pair function
gxc(r, r

′), such that hxc(r, r
′) = ρ(r′)gxc(r, r

′). The functional derivative of Sij , for example, becomes

δS̃ij
δρ(r)

= b̃i(r)b̃j(r)− b̃i,xc(r)b̃j(r)− b̃i(r)b̃j,xc(r) + grespij (r), (9)

where

grespij (r) =

∫
dr′
∫
dr′′ρ(r′)ρ(r′′)b̃i(r

′)b̃j(r
′′)
δgxc(r

′, r′′)

δρ(r)
. (10)

The functional derivative of w̃ij has an analogous but less transparent expression (not reported), where
the A-xc-hole projected interaction (or B for the other functional derivative) enters, together with the
matrix element of the functional derivative of gxc between the interaction and the given dispersal.
We now define the matrices that appear in the main article,

τ̇Apq(r) =
∑
ij

BAip
δτ̃Aij
δρA(r)

BAjq, (11)

ṠApq(r) =
∑
ij

BAip
δS̃Aij
δρA(r)

BAjq, (12)

ẇApq(r) =
∑
ij

BAip
δw̃ij
δρA(r)

BBjq, (13)

and introduce them into the expressions for the derivatives of the eigenvalues and eigenvectors, respec-
tively,

δτAp
δρA(r)

= τ̇App(r)− τpṠApp(r), (14)

δBip
δρ(r)

= −1

2
BAipṠ

A
pp(r) +

∑
r 6=p

Bir
1

τp − τr

(
τ̇Arp(r)− τpṠArp(r)

)
. (15)

Now we have all the ingredients necessary to obtain the functional derivative of the final energy of
equation 27 of the article, which is repeated here for clarity,

Edisp[ρA, ρB ] = −2
∑
pq

w2
pq

τAp + τBq
. (16)

We take the functional derivative w.r.t. ρA(r) and obtain,

δEdisp[ρA, ρB ]

δρA(r)
= −4

∑
pq

δwpq
δρA(r)

wpq
τAp + τBq

+ 2
∑
pq

δτAp
δρA(r)

w2
pq

(τAp + τBq )2
. (17)

To work out the first term, note that,

δwpq
δρA(r)

=
∑
ij

δBAip
δρA(r)

w̃ijB
B
jq +

∑
ij

BAip
δw̃ij
δρA(r)

BBjq =
∑
ij

δBAip
δρA(r)

w̃ijB
B
jq + ẇApq(r). (18)

Plugging in the expression for the derivative of the eigenvector,

δwpq
δρA(r)

= −1

2

∑
ij

BAipṠ
A
pp(r)w̃ijB

B
jq +

∑
ij

∑
r 6=p

1

τp − τr

(
τ̇Arp(r)− τpṠArp(r)

)
Birw̃ijB

B
jq + ẇApq(r), (19)

which can be simplified to,

δwpq
δρA(r)

= −1

2
ṠApp(r)wpq +

∑
r 6=p

1

τp − τr

(
τ̇Arp(r)− τpṠArp(r)

)
wrq + ẇApq(r). (20)
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Then we collect all terms of the full functional derivative,

δEdisp[ρA, ρB ]

δρA(r)
=
∑
pq

(
2
(
τ̇App(r)− τAp ṠApp

) wpq
τAp + τBq

+ 2wpqṠ
A
pp (21)

− 4
∑
r 6=p

1

τAp − τAr

(
τ̇Arp(r)− τAp ṠArp(r)

)
wrq − 4ẇApq(r)

)
wpq

τAp + τBq
.

We would like to combine the terms in such a way to remove the divergent terms 1
τA
p −τA

r
. We do this

separately for the terms depending on τ̇A(r) and ṠA(r). First we treat the terms involving τ̇Apq(r). We

multiply and divide the divergent term by (τAr + τBq ).

2
∑
pq

τ̇App(r)
w2
pq

(τAp + τBq )2
−4

∑
p 6=r,q

τ̇Arp(r)
wpqwrqτ

A
r

(τAp + τBq )(τAp − τAr )(τAr + τBq )
−4

∑
p 6=r,q

τ̇Arp(r)
wpqwrqτ

B
q

(τAp + τBq )(τAp − τAr )(τAr + τBq )

(22)
The denominator of the third (divergent) term is antisymmetric under exchange of r and p, while the
product wpqwrqτ

B
q is symmetric, resulting in zero after summation. Now we split the (second) divergent

term in half and relabel r ↔ p in one of the resulting terms, swap r and p in the denominator and
combine them to obtain,

2
∑
pq

τ̇App(r)
w2
pq

(τAp + τBq )2
− 2

∑
p 6=r,q

τ̇Arp(r)
wpqwrq(τ

A
r − τAp )

(τAp + τBq )(τAp − τAr )(τAr + τBq )
. (23)

Cancelling the denominator and numerator, one obtains,

2
∑
pq

τ̇App(r)
w2
pq

(τAp + τBq )2
+ 2

∑
p 6=r,q

τ̇Arp(r)
wpqwrq

(τAp + τBq )(τAr + τBq )
= 2

∑
pqr

τ̇Arp(r)
wpqwrq

(τAp + τBq )(τAr + τBq )
. (24)

We proceed with the terms involving ṠA(r),

−2
∑
pq

ṠApp(r)
τAp w

2
pq

(τAp + τBq )2
+ 2

∑
pq

ṠApp(r)
w2
pq

τAp + τBq
+ 4

∑
p 6=r,q

ṠArp(r)
τAp wpqwrq

(τAp + τBq )(τAp − τAr )
. (25)

First we multiply and divide the second term by (τAp + τBq ),

−2
∑
pq

ṠApp(r)
τAp w

2
pq

(τAp + τBq )2
+ 2

∑
pq

ṠApp(r)
w2
pq(τ

A
p + τBq )

(τAp + τBq )2
+ 4

∑
p 6=r,q

ṠArp(r)
τAp wpqwrq

(τAp + τBq )(τAp − τAr )
, (26)

after which the first term is cancelled with the second,

2
∑
pq

ṠApp(r)
w2
pqτ

B
q

(τAp + τBq )2
+ 4

∑
p 6=r,q

ṠArp(r)
τAp wpqwrq

(τAp + τBq )(τAp − τAr )
. (27)

Now we multiply and divide the divergent term with (τAr + τBq ), and obtain,

2
∑
pq

ṠApp(r)
τBq w

2
pq

(τAp + τBq )2
+ 4

∑
p 6=r,q

ṠArp(r)
τAp τ

A
r wpqwrq

(τAp + τBq )(τAp − τAr )(τAr + τBq )
+ 4

∑
p 6=r,q

ṠArp(r)
τAp τ

B
q wpqwrq

(τAp + τBq )(τAp − τAr )(τAr + τBq )
.

(28)

By symmetry the second term is zero and we are left with,

2
∑
pq

ṠApp(r)
τBq w

2
pq

(τAp + τBq )2
+ 4

∑
p 6=r,q

ṠArp(r)
τAp τ

B
q wpqwrq

(τAp + τBq )(τAp − τAr )(τAr + τBq )
. (29)
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We split the second term in half and relabel r ↔ p in one of the resulting terms, swap r and p in the
denominator and combine them to obtain,

2
∑
pq

ṠApp(r)
τBq w

2
pq

(τAp + τBq )2
+ 2

∑
p 6=r,q

ṠArp(r)
(τAp − τAr )τBq wpqwrq

(τAp + τBq )(τAp − τAr )(τAr + τBq )
= 2

∑
pqr

ṠArp(r)
τBq wpqwrq

(τAp + τBq )(τAr + τBq )
,

(30)

where we cancelled (τAp − τAr ) in the numerator and denominator and combined the sums. The final
functional derivative is then the one reported in the main article,

δEdisp[ρA, ρB ]

δρA(r)
= 2

∑
pq

wpq
τAp + τBq

(∑
r

(
τ̇Arp(r) + τBq Ṡ

A
rp(r)

) wrq
τAr + τBq

− 2ẇApq(r)

)
. (31)
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