Supporting Information for

Avoiding high ozone pollution in Delhi, India

Ying Chen^{*a}, Gufran Beig^b, Scott Archer-Nicholls^c, Will Drysdale^d, W. Joe F. Acton^a, Douglas Lowe^e, Beth Nelson^d, James Lee^d, Liang Ran^f, Yu Wang^e, Zhijun Wu^g, Saroj Kumar Sahu^h, Ranjeet S. Sokhiⁱ, Vikas Singh^j, Ranu Gadi^k, C. N. Hewitt^a, Eiko Nemitz^l, Alex Archibald^c, Gordon McFiggans^e, Oliver Wild^{*a}

^aLancaster Environment Centre, Lancaster University, Lancaster, UK

^bIndian Institute of Tropical Meteorology, Pune, India

^cNCAS-Climate, Department of Chemistry, University of Cambridge, Cambridge, UK ^dWolfson Atmospheric Chemistry Laboratories, University of York, United Kingdom ^eCentre for Atmospheric Sciences, Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK ^fKey Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China ^gState Key Joint Laboratory of Environmental Simulation and Pollution Control,

College of Environmental Sciences and Engineering, Peking University, Beijing, China ^hEnvironmental Science, Department of Botany, Utkal University, Bhubaneswar, India ⁱCentre for Atmospheric and Climate Physics Research, University of Hertfordshire, Hatfield, Hertfordshire, UK

^jNational Atmospheric Research Laboratory, Gadanki, AP, India

^kIndira Gandhi Delhi Technical University for Women, Kashmere Gate, Delhi, India

¹UK Centre for Ecology & Hydrology, UKCEH, Bush Estate, Penicuik, UK

*Email: Ying Chen (y.chen65@lancaster.ac.uk); Oliver Wild (o.wild@lancaster.ac.uk)

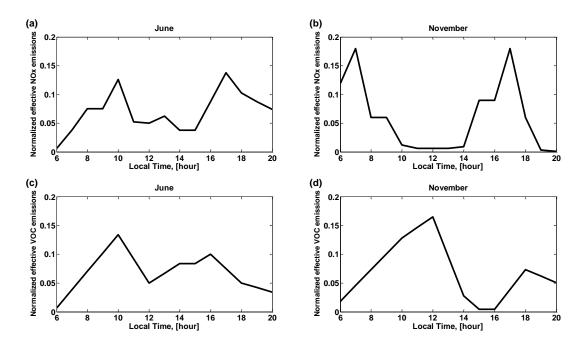

Contents of this file:

Figure S1 – Diurnal pattern of effective emissions;

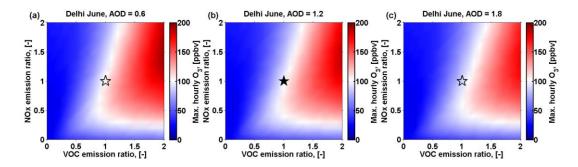
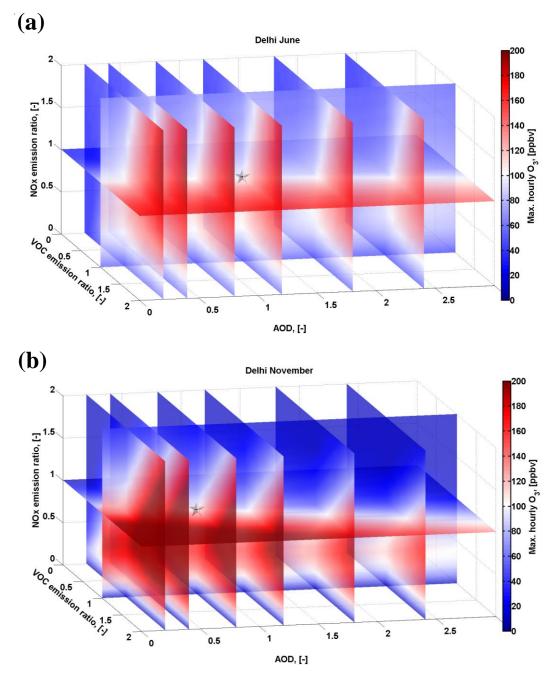

Figure S2 – Non-linear relationship between NOx-VOC-O₃ in June, Delhi;

Figure S3 – A tomogram of non-linear AOD-NOx-VOC-O₃ relationship;


Figure S4 – The changes of hourly peak ozone concentration over Delhi region, with respect to reduction of emissions from different sectors

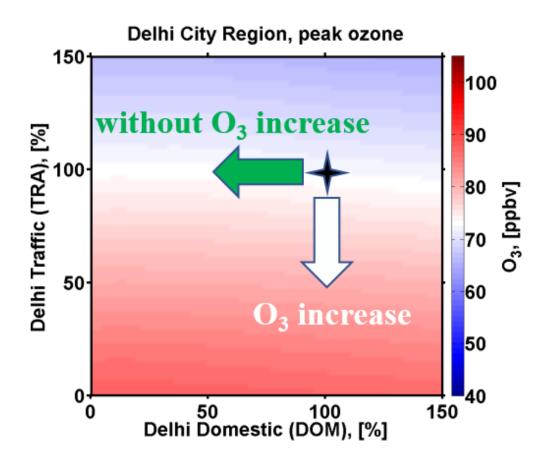

Figure S1. Diurnal pattern of effective emissions. (a) NOx in June, (b) NOx in November, (c) VOC in June, and (d) VOC in November. Only a limited number of VOC species are measured, and therefore we use toluene emissions as a proxy to represent the ozone produce potential of anthropogenic VOCs emissions.

Figure S2. Non-linear relationship between NOx-VOC-O₃ **in June 2018, Delhi.** (a) AOD=0.6; (b) AOD=1.2; (c) AOD=1.8. The base-case is marked by a black solid star. The sensitivity cases, with changes in AOD but not in NOx or VOC emissions, are marked by black hollow stars.

Figure S3. A tomogram of non-linear AOD-NOx-VOC-O₃ relationship. The colours indicate maximum hourly ozone concentration, as a function of NOx emission, VOC emission and AOD. (a) June; (b) November. The base case is marked by a black star at the center.

Figure S4. The changes of hourly peak ozone concentration over Delhi region, with respect to reduction of emissions from different sectors. Source from Chen et al. (2020), reuse authorized according to the Creative Commons Attribution 4.0 License.

Supplementary References:

Chen, Y., Wild, O., Ryan, E., Sahu, S. K., Lowe, D., Archer-Nicholls, S., Wang, Y., McFiggans, G., Ansari, T., Singh, V., Sokhi, R. S., Archibald, A., and Beig, G.: Mitigation of PM2.5 and ozone pollution in Delhi: a sensitivity study during the pre-monsoon period, Atmos. Chem. Phys., 20, 499-514, 10.5194/acp-20-499-2020, 2020.