Supplementary Information

Asia Pacific Road Transportation Emissions, 1900-2050

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Xiaoyi He^{a, b}, Wei Shen ^c, Timothy J. Wallington^{*d}, Shaojun Zhang ^a, Xiaomeng Wu^a, Zuguo Bao ^e, Ye Wu ^{*a,f}

Asia Pacific (AP) is the largest regional vehicle market and accounted for 48% of global sales in 2019. Air quality is a pressing issue in many AP countries and together with increased vehicle sales has led to intense scrutiny of vehicle emissions. The heterogeneity of socio-economic features and transportation patterns in AP countries has resulted in different emission levels and control policies. We present an assessment of the historical and future emissions of on-road transportation and strategies to tackle emission challenges. First, we collected historical country-level population, economic development, vehicle ownership, and transportation policy data from 1900 to 2020, and forecast future development of on-road transportation activity (both passenger and freight) based on its historical relationship with socio-economic development through 2050. We considered major countries (China, India, Japan, South Korea, Australia) individually and other AP countries as a group. Second, we generated a series of emission control scenarios with various stringency levels after a comprehensive review of vehicle control measures implemented in AP countries. The control packages included transportation mode shifts, pollutant emission standards, fuel consumption standards, fuel and powertrain diversification, improvement in fuel quality, and economic and transportation policies. Localized emission factors for greenhouse gases (GHGs) and criteria air pollutants (carbon monoxide (CO), nitrogen oxides (NOX), and particulate matter (PM)) were collected and estimated in line with the emission control measures. Third, we estimated historical and future emissions of AP on-road transportation from 1900 to 2050. The results showed that that major air pollutants (NOX, CO, and PM2.5) from on-road vehicles peaked in 2000-2010 and are now declining despite increasing vehicle population. Control of GHGs is more challenging than for criteria air pollutants. In our reference scenario where existing policies and emission standards are implemented and new technologies are adopted according to national plans, road transportation GHG emissions in AP peak in approximately 2040.

^{a.} School of Environment, and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.

^{b.} Current address: Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Dana Bldg. 440 Church, Ann Arbor, MI 48109-1041

^{c.} Ford Motor Company, Beijing 100022, China

^{d.} Ford Motor Company, Dearborn, Michigan 48121-2053, United States ^{e.} Ford Motor Company, Nanjing 211100, China

^{f.} State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.

^{*} Corresponding authors: Timothy J. Wallington (twalling@ford.com) and Ye Wu (ywu@tsinghua.edu.cn)

Electronic Supplementary Information (ESI) available: supplementary information document. See DOI: 10.1039/x0xx00000x

Supplementary Information

Figure S1 Share of new bus sales by fuel/engine technology in Asia Pacific.

Please do not adjust margins

Faraday Discussion

Supplementary Information

Figure S2 Share of new LHDT sales by fuel/engine technology in Asia Pacific.

Figure S3 Share of new MHDT and HHDT sales by fuel/engine technology in Asia Pacific

ARTICLE

Table S1 Use phase emission factors for the average fleet (g/km) used in this study.

Vehicle segment	Pollutants	Uncontrolled	Engine Mods	Euro 1	Euro 2	Euro 3	Euro 4	Euro 5	Euro 6	SULEV
Gasoline LDV	CH ₄	0.097	0.097	0.021	0.015	0.003	0.003	0.003	0.003	0.001
	N ₂ O	0.007	0.196	0.053	0.051	0.022	0.007	0.007	0.004	0.004
	NO _x	2.373	2.373	0.411	0.276	0.103	0.051	0.027	0.027	0.015
	CO	19.516	13.553	5.775	4.548	2.032	0.720	0.489	0.489	0.245
	PM ₁₀	0.106	0.049	0.391	0.016	0.010	0.006	0.006	0.006	0.003
	PM _{2.5}	0.097	0.033	0.301	0.012	0.008	0.004	0.004	0.004	0.002
	BC	0.029	0.011	0.102	0.004	0.003	0.001	0.001	0.001	0.001
Diesel bus	CH ₄	0.175	0.175	0.175	0.114	0.074	0.004	0.004	0.004	0.004
	N ₂ O	0.383	0.448	0.318	0.311	0.249	0.143	0.078	0.012	0.012
	NO _x	16.289	16.289	15.966	12.960	12.230	9.784	7.827	1.957	1.174
	CO	20.079	20.079	18.801	14.239	12.580	5.374	2.678	2.678	0.150
	PM ₁₀	2.640	2.263	1.883	1.611	1.125	0.812	0.510	0. 140	0.124
	PM _{2.5}	1.886	1.886	1.444	1.433	0.754	0.332	0.265	0.080	0.056
	BC	0.641	0.641	0.491	0.487	0.256	0.113	0.090	0.027	0.019
Gasoline 2W	CH ₄	1.351	0.554	0.308	0.277	0.185	0.113	0.068	0.045	0.023
	N ₂ O	0.000	0.014	0.008	0.007	0.005	0.004	0.002	0.002	0.001
	NO _x	0.160	0.160	0.160	0.150	0.009	0.005	0.004	0.004	0.003
	CO	15.613	10.842	23.055	8.293	3.463	1.385	1.177	1.001	0.911
	PM ₁₀	0.126	0.051	0.025	0.019	0.011	0.006	0.003	0.002	0.001
	PM _{2.5}	0.030	0.030	0.018	0.008	0.003	0.001	0.001	0.001	0.001
	BC	0.010	0.010	0.006	0.003	0.001	0.000	0.000	0.000	0.000
Diesel LHDT	CH ₄	0.019	0.019	0.009	0.005	0.002	0.001	0.000	0.000	0.000
	N ₂ O	0.040	0.075	0.051	0.038	0.022	0.020	0.004	0.003	0.000
	NO _x	5.100	5.100	4.934	4.747	2.281	1.437	0.930	0.280	0.056
	CO	4.466	4.466	4.271	3.450	2.121	1.337	1.337	1.337	0.117
	PM ₁₀	0.506	0.506	0.272	0.283	0.178	0.060	0.010	0.007	0.006
	PM _{2.5}	0.457	0.457	0.283	0.262	0.114	0.045	0.009	0.003	0.002
	BC	0.155	0.155	0.096	0.089	0.039	0.015	0.003	0.001	0.002
Diesel MHDT	CH ₄	0.060	0.053	0.053	0.034	0.026	0.002	0.002	0.002	0.002
	N ₂ O	0.288	0.204	0.200	0.179	0.143	0.093	0.051	0.008	0.008
	NOx	13.644	13.644	10.389	9.493	8.720	6.022	3.942	1.183	0.237
	CO	20.079	20.079	5.913	5.329	3.033	1.911	1.911	1.911	0.117
	PM ₁₀	2.107	2.107	1.272	0. 683	0.378	0.160	0.058	0.011	0.010
	PM _{2.5}	1.886	1.886	1.032	0.345	0.255	0.100	0.020	0.006	0.004
	BC	0.641	0.641	0.351	0.117	0.087	0.034	0.007	0.002	0.001
Diesel HHDT	CH ₄	0.125	0.125	0.125	0.079	0.057	0.005	0.005	0.005	0.005
	N ₂ O	0.399	0.597	0.528	0.434	0.353	0.158	0.086	0.014	0.014
	NO _x	16.686	16.686	11.550	11.351	10.889	7.521	4.924	1.477	0.309
	CO	21.175	21.175	8.938	4.816	4.084	2.859	2.859	2.859	0.206
	PM ₁₀	1.889	1.869	0.852	0.761	0.465	0.205	0.119	0.036	0.024
	PM _{2.5}	1.738	1.558	0.710	0.634	0.388	0.171	0.100	0.030	0.021
	BC	0.591	0.530	0.241	0.216	0.132	0.058	0.034	0.010	0.007

Faraday Discussion

Supplementary Information

Table S2. Average sulfur content in diesel (ppm) assumed in this study.	Table S2. Average sulfur	content in diesel	(ppm) assumed	l in this study.
---	--------------------------	-------------------	---------------	------------------

Region	1900-1995	2000	2005	2010	2015	2020	2025-2050
negion	1900 1999	2000	2005	2010	2015	2020	2023 2030
China	2,000	2,000	1,850	1,000	350	10	10
Japan	2,000	500	50	10	10	10	10
India	2,500	2,500	485	350	50	30	10
South Korea	2,000	500	100	10	10	10	10
Australia	2,000	2,000	500	50	10	10	10
Asia-Pacific-40	2,000	2,000	2,000	500	350	50	10