Insights into air pollution chemistry and sulphate formation from nitrous acid (HONO) measurements during haze events in Beijing

SUPPLEMENTARY INFORMATION

Supplementary Figures

Figure S1: Observationally-derived $P_{sulphate}$ values via E2, discounting advection impacts – see text for details.

Figure S2: Observed (red points) and NAQPMS modelled (black line) OH concentrations

Figure S3: Correlation between PSS-calculated and observed HONO mixing ratios, coloured by SO₄ abundance

Figure S4: Model predicted sulphate formation rates (Ionic strength = zero case) for the H_2O_2 , O_3 , NO_2 and TMI mechanisms – axis expansion from Figure 6.

Supplementary Tables:

ST1, ST2 : 24-hour mean observed meteorological parameters, key gas phase mixing rations and aerosol (condensed phase) concentrations

ST3, ST4: Condensed-phase model kinetic parameters adopted

Date	Met. Pai	rameters	Measured mixing ratios / ppb				
	RH / %	Temp / °C	O ₃	NO	NO ₂	SO ₂	NH ₃
01/12/2016	24.2	9.3	16.4	6.4	28.5	3.2	10.0
02/12/2016	36.8	7.5	4.8	38.0	45.4	5.9	17.4
03/12/2016	48.0	7.3	5.1	69.5	59.5	9.8	22.5
04/12/2016	57.3	7.2	5.4	67.0	56.4	8.1	22.9
05/12/2016	30.3	6.5	12.6	9.7	24.4	2.7	13.6
06/12/2016	28.9	5.5	3.6	83.7	54.4	7.4	16.7
07/12/2016	39.8	7.5	3.9	88.6	58.1	8.8	22.9
08/12/2016	34.8	8.0	16.8	41.1	28.8	4.9	17.4
09/12/2016	29.4	5.3	13.4	10.7	25.1	3.1	10.4
10/12/2016	38.4	2.0	4.0	36.3	32.0	4.9	14.1

Table ST1 : Measured	gas-phase	composition	and meteoro	logical	parameters
	2 1				

Date	Measured aerosol soluble ion composition / µg m ⁻³						AWC (%)	рН	
	K+	Na⁺	NH_4^+	Ca ²⁺	NO ₃ -	SO42-	Cl-		
01/12/2016	0.4	0.2	4.3	0.2	5.6	3.0	2.4	1.65	4.92
02/12/2016	0.9	0.6	8.3	0.3	15.0	5.0	3.5	7.60	5.07
03/12/2016	2.7	0.8	22.6	0.4	34.6	24.2	8.2	47.35	4.40
04/12/2016	1.3	0.5	12.1	0.3	21.0	12.7	2.9	18.05	4.35
05/12/2016	0.3	0.2	1.7	0.2	1.7	1.4	1.6	0.34	5.50
06/12/2016	1.2	0.8	8.3	0.3	14.9	3.9	5.0	6.88	5.81
07/12/2016	1.3	0.5	11.5	0.2	17.6	10.6	4.9	14.37	4.62
08/12/2016	0.2	0.1	1.7	0.3	1.9	2.1	1.3	0.57	4.80
09/12/2016	0.5	0.2	2.9	0.2	4.1	2.4	1.9	1.90	5.16
10/12/2016	0.8	0.5	6.0	0.4	7.8	3.4	4.3	-	-

Table ST2: Measured aerosol composition, AWC and calculated pH

Equilibrium reaction	H ₂₉₈ (M atm ⁻¹)/ K ₂₉₈ (M) ^a	-∆H/R (K)	Supplementary Information Reference			
$SO_2(g) + H_2O \leftrightarrow SO_2 \cdot H_2O$	1.3	3100	1			
$SO_2 \cdot H_2O \leftrightarrow HSO_3^- + H^+$	1.3×10 ⁻²	1960	2			
$HSO_3^- \leftrightarrow SO_3^{2-} + H^+$	6.6×10 ⁻⁸	1500	2			
$O_3(g) \leftrightarrow O_3(aq)$	1.13×10 ⁻²	2500	1			
$H_2O_2(g) \leftrightarrow H_2O_2(aq)$	9.1×10 ⁴	6900	1			
$NO_2(g) \leftrightarrow NO_2(aq)$	1.3×10 ⁻²	2500	1			
^a the temperature dependence is represented by $H(T) = H_{298} exp^{[m]} \left[-\frac{\Delta H}{R} \left(\frac{1}{T} - \frac{1}{298}\right) \right]$ $K(T) = K_{298} exp^{[m]} \left[-\frac{\Delta K}{R} \left(\frac{1}{T} - \frac{1}{298}\right) \right]$						

 Table ST3:
 Thermodynamic data for aqueous equilibrium constants

Reaction	Rate expression (M S ⁻¹)	Supplementary					
		Information					
		Reference					
$SO_2 + H_2O_2 \rightarrow SO_4^{2-} + H_2O$	$k_{1[H^{+}]}[\text{Hs}^{O_{3}}][H_{2}O_{2}(\text{aq})]/(1+\kappa[H^{+}])$	2					
	$k_{1=7.45} \times 10^7 M^{-1} s^{-1}$, E/R ^a =4430K						
	$K = 13M^{-1}$						
$SO_2 + O_3 \rightarrow SO_4^{2-} + O_2$	$(k_{2}[S^{O_{2}}H_{2}O]+k_{3}[HS^{O_{3}}]+k_{4}[S^{O_{3}}])[O_{3}(aq)]$	2					
	$k_{2=2.4} \times 10^4 M^{-1} s^{-1}$						
	$k_{3=3.7} imes 10^5 M^{-1} s^{-1}$, E/R=5530K						
	$k_{4=1.5} \times 10^9 M^{-1} s^{-1}$, E/R=5280K						
$SO_2 + 1/2O_2 \xrightarrow{Mn(II), Fe(III)} SO_4^{2-}$	$k_{5}[H^{+}]^{-0.74}[S(IV)]$ [Mn(II)] [Fe(III)] (pH	3					
	≤ 4.2)						
	$k_{5=3.72} \times 10^{7} M^{-1} s^{-1}$						
	$k_5[H^+]^{0.67}[S(IV)]$ [Mn(II)] [Fe(III)] (pH > 4.2)						
	$k_{5=2.51 \times 10^{13} M^{-1} s^{-1}}$						
$SO_2 + 2NO_2 \rightarrow SO_4^{2-} + 2HONO$	k _{6[} NO ₂ (aq)] [S(IV)]]	4					
	$k_{6=1.4} \times 10^5 M^{-1} s^{-1}$, E/R=0K (pH ≤ 5.0)						
	$k_{6=8.4} \times 10^{-3} [H^+]^{-1.444} M^{-1} s^{-1}$, E/R=0K						
	$(5.0 < pH \le 5.8)$						
	$k_{6=2.0} \times 10^{6} M^{-1} s^{-1}$, E/R=0K (pH>5.8)						
^a the temperature dependence of kinetic constant <i>k</i> is represented by							
$k(T) = k_{298} exp^{[i0]} \left[-\frac{E}{R} \left(\frac{1}{T} - \frac{1}{208} \right) \right]$							
N 1 270							
^b S(IV) refers to the total dissolved sulphur in solution in oxidation state 4, given by							
$S(IV) = [SO_2 : H_2O] + [HSO_2^{-1}] + [SO_2^{2-1}]$							

Table ST4: Rate expression and rate coefficients of aqueous-phase formation of sulphate

l

References for Supplementary Tables

- 1. R. Sander, Atmos. Chem. Phys. 2015, 15, 4399
- 2. Seinfeld, J.H. and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2016, 3rd Edn, John Wiley & Sons, Inc., Hoboken, New Jersey
- 3. T. Ibusuki and K. Takeuchi, Atmos. Environ., 1987, 21, 1555
- 4. Y. Cheng, G. Zheng, C. Wei, Q. Mu, B. Zheng, Z. Wang, M. Gao, Q. Zhang, K. He, G. Carmichael, U. Poschl and H. Su, Sci. Adv., 2016, 2, e1601530