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I. DERIVATION

Here we derive in details the density of the physical system from the linear response theory for optimized effective
potential (OEP)[1-3] and generalized OEP (GOEP) methods[4]. The total energy functional is

Evp = Tslpd (x,x")] + Jlps(r)] + /drvext(r)Ps(r) +Eg™, (1)

where the first three terms on the right hand side are the kinetic energy, Hartree energy, and external energy respec-
tively, which are explicit functionals of pZ(r) and pZ(r,r’); EPFA is the exchange-correlation (XC) energy whose exact
functional form is unknown, three types of functionals will be discussed below, i.e. ELFA[p7(r)], EPFA[pg (r,r)], and
EP¥A {5 (1)}, vext (r)]. Here orbitals {¢,, (r)} and orbital energies {e,, } are obtained from the following one-electron
Schrodinger equation
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The determination of OEP is formulated as an optimization problem with the following construction for the OEP,

v (1) = Vext (1) + Ve (1)- 3)

Here the external potential vex(r) is deliberately separated from the total effective potential v7(r). vext(r) remains
unchanged for a specific system. v, (r) is the Hartree-exchange-correlation (Hxc) potential, which includes the rest
of the effective potential and is different for different methods.

For OEP, when the minimal energy is reached for a specific system, the stationary condition is
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In the direct optimization method of Yang and Wu[2, 5], vJ(r) is further selected as vJ(r) = vo(r) + >, b7g(r) ,
where v(r) is a fixed reference potential including the external potential, and {b?} are the coefficients for the linear
combination of a set of basis functions {g;(r)}. This makes it more practical, because {g;(r)} only need to expand a
small part of the effective potential.

The GOEP, v7(r,r’),on the other hand, is a nonlocal potential in space and can be represented in the orbital basis
as

v‘;(nr') = Z<r|¢p0>7};pq<¢q0|r/>a (5)

pq

where p and ¢ are orbital indices. Unlike the OEP method, the orbitals density matrix and orbitals from GOEP is
fully relaxed because there is no restriction of the locality in real space[4]. When the energy minimum is reached, the
derivatives below should be zero,
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It has been proved that the optimization of the total energy with respect to the GOEP is equivalent to the orbital
optimization (OO) method[6], thus at the stationary point of GOEP, the orthonormalization constrained derivatives
of the total energy with respect to oribital obey[4]
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where (0Eto¢/0¢ps(r))q is the energy functional derivative with respect to the orbital under the orthonormalization
constraint (@ |Pge) = 0pq[7], as indicated by the subscript O. Now we discuss the electron densities in three different
types of functionals.

A. When EPFA is an explicit and continuous functional of the density pJ(r), the total energy functional is

B (1,1)) = Lo (6,17)] 4 Jlpu )] + [ drvess(0)pu(o) + ER 2 () ®
The g.s. energy is
EPPAN) = min EPPMpg (), (9)

which leads to one-electron Schrodinger equation with local potential. In this scenario, the nonlocal GOEP will reduce
to a local potential. Therefore, ps(r) of Inv-OEP, OEP and GOEP are the same, which is equal to p(r) from the
linear response

_OEJPA(N)
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B. When EPFA is an explicit and continuous functional of the noninteracting reference density matrix pJ(r,r’), the
total energy functional is

B (1,1)) = Lo (1,170 + 1o 6] + [ dvess (009 (0) + ERP 2 (r10), (11)

Now, OEP and GKS/GOEP are not the same.
For OEP, the ground-state energy is the minimum with the local potential constraint,

EPPA(N) = min EPPMpg (r, 1)) (12)
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The density of the physical system is
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We now define the effective (nonlocal) one-electron effective Hamiltonian hg,, = —iVvi4 vZ;;(r1,r2) through
§EPTA [pg(rlv FQ)} o o
(Fobiey ) = aston) =< bty > 1

EDFA [ o

For any hybrid functional, h7; is just the nonlocal GKS Hamiltonian. (%W) =<r3|(I—Py)h 0rfbio >,
where P, = )", |¢i,) (¢is| [7]. Using the first-order perturbation theory, we have
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Combing Egs. 13,15, and 16, we obtain
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This is the density of the physical system for functionals of the density matrix like hybrid functionals.
With GOEP/OO calculations, the ground-state energy is

EJPA(N) = min EP™pZ(r,x")] = min EPFA[p] (r, 1)), (18)
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which is equivalent to the GKS method with a nonlocal XC potential. The density of the physical system is
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= ps(r). (19)

Therefore, GOEP and GKS fully minimize the total energy and give the density of the physical system as ps(r).

C. When EPFA is an implicit functional of the noninteracting reference density matrix pJ (r, r’), and having explicit
dependence on orbitals {¢,-(r)} and the external potential vey(r) (e.g. through eigenvalues), the total energy
functional is

725?[{(;5170( )}] =T [pg(r, r/)] + J[Ps (r)] + /dr”ext(r)pS(r) + EQFA[{(ﬁPU(r)}»Uext(r)]' (20)

For OEP, the approximate ground-state energy is minimization with local potential constraint,

EpENN) = min E)PM{6,0(r)}]. (21)
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The density of the physical system is
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Thus, the density of the physical system is not the same as the reference density ps(r) from OEP.
With GOEP or OO calculations, the ground-state energy is
EPPNN) = min, B {60 (1)}] = min EDN({pa(r)}, 29

GOEP minimizes the total energy (without constraint on the potential being local). The density of the physical



system is
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Therefore, the GOEP /OO reference density ps(r) is not equal to the density of the physical system.

II. DENSITY OF PH-RPA

To illustrate our idea, we derive and calculate the density of the physical system with ph-RPA, MP2 and pp-RPA
under the GOEP or OO formulation and compare it with the noninteracting reference density. Ph-RPA is denoted
here as RPA for simplicity. The total energy of RPA is

Etot — EHF + E?PA. (26)

The first term, EMF | is the HF total energy evaluated with the reference DFA p,(r’,r); while the second term is the
RPA correlation energy
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with A and B being the RPA matrix components
Agipj = hapdij — hijdap + (aj|ib);
Baip; = (ablif).

Here h is the DFA Hamiltonian of the noninteracting reference system. X,, and Y,, are eigenvectors of the RPA matrix

(4 B () (3).

At the GOEP stationary point of the RPA energy functional, the density of the physical system derived from Eq. 25
takes the following expression

RPA Z¢1 ZDRPA + ZDRPA ( ) (30)

(28)

Here we define D%PA and D?bPA as the occupied-occupied and virtual-virtual blocks of the RPA density matrix:

Dz'P;PA - *% Z {Z[(Yn)ai(yn)aj + (Xn)ai(Xn)aj] - 52’3} 5
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The first term in Eq. 30 is the density of the reference non-interaction system. The latter two terms originate from
the external potential dependence of the RPA correlation energy. It is worth noting that the density of the physical

system does not have any contribution from the occupied-virtual block.



IIT. DENSITY OF MP2

Here we discuss the MP2 correlation energy functional. In order to keep the total energy invariant with respect to
orbital rotations within each subspace (occupied or virtual), we need to start from the Hylleraas function representation
of the MP2 energy|[8]. The Hylleraas function can be expanded by orbitals and the Fock operator,

EMP2 — Zt (ij||ab) 4t (ab||iz) —|—ZD%[P2F —|—ZDMP2Fab (32)
z]ab LJ
where 7, j, k, - - - represent occupied orbitals and a, b, ¢, - - - represent virtual orbitals. In Eq. 32, F'is the Fock operator,

t is the MP2 wavefunction amplitude, and D is the MP2 density block. If the orbitals diagonalize the occupied and
virtual subspaces of F', namely

Fyj = 04 Fy = 4,
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And the MP2 density blocks are
1
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The total energy of MP2 is
Etot _ EHF + EMP2 (36)

Note that the wavefunction amplitudes ¢ always obey the condition that dFE*t/ atfi = 0. At the SCF solution, the
electron density is further expanded as

MP2 Z ¢z ZDMPQ + ZDMPQ ( ) (37)

The first term in Eq. 37 is the non-interacting reference density. Notice that the non-interacting reference density is
not the density of the physical system for MP2 functional.

IV. DENSITY OF PP-RPA

Here we discuss the RPA correlation energy functional in the particle-particle channel, denoted as pp-RPA. The

eigenvalue equation for pp-RPA is
A B)\ (X,

where
Adp,cd = PacOpa + Ppadac + = (ab| |cd)
1 ..
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The pp-RPA correlation energy [9] is

The eigenvalue part is
wn, = XIAX,, + XIBY, + Y/B'X, + Y!CY,
= Z (Xn)::bAab,cd(Xn)cd + Z (Xn):;bBab,ij(Yn)ij
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The corresponding derivative is
partl = Y (X)) (850c0ba + G5 Padac) Xn)ea — Y, (Yo)ij (65 bkdjt + &5 b10ix) (Y b (42)
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The trace part is
TrA = Z Foo + Fyp + {(ab||ab) 4+ spin 8 channel + Z Foo + Fyp + (ablab) (43)
a>b ab
The corresponding derivative is
part2 = ($ad; + ¢v@}) + spin B channel + Y _(¢ad) + ¢30;) (44)
a>b ab

And plus the reference density part pif(x) = Y7 ¢;(x) o} (x).
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V. ORIGINAL DATA

All calculations were performed in the QM*D package[10]. We here list all data mentioned in the main text. The
notation for RPA is different from the main text because here we calculate the dipoles with both ph- and pp-RPA.
Here, ph or pp@X (where X is the functional of the chosen reference density functional) refer to the ph- or pp-RPA
density of the physical system calculated with our GOEP method. In addition, the MP2 column refers to the MP2
density calculated with the couple perturbed Hartree Fock equation, while the GOEP-MP2 column refers to our GOEP
calculations with MP2. In the Supplementary Materials, We only reported the dipole moments with the density of the
physical system, not the noninteracting reference density. Some elements are left blank because imaginary eigenvalues
were observed while performing the GOEP calculations The experimental reference data are from CCCBDBJ11].

We first tested the basis set convergence with water molecule (Fig. 1). Diffusion basis functions are important, or
the dipole moment can be highly overestimated. Def2-TZVPD can be considered as converged (within 0.02 Debye),
which was used for all the calculations in the main text.

TABLE I. Dipole moments of H,O calculated with different functionals.
Mol. Ref.  Basis Set  HF PBE B3LYP MP2 GOEP-MP2 ph@HF ph@PBE ph@B3LYP ppQHF ppGPBE ppQB3LYP

Def2-SVP 2,127 1.929 1.976 2.040 2.025 2.020 1.932 1.960 2.076 1.994 2.011

Def2-TZVP 2.151 2.020 2.065 2.103 2.093 2.089 2.019 2.041 2.132 2.083 2.082

H,0 1.855 Def2-SVPD 2.027 1.828 1.888 1.890 1.861 1.902 1.807 1.837 1.944 1.864 1.885
Def2-TZVPD 1.977 1.789 1.848 1.864 1.838 1.886 1.800 1.827 1.915 1.838 1.858
Def2-TZVPPD 1.977 1.790 1.849 1.845 1.819 1.861 1.767 1.796 1.904 1.833 1.845

TABLE II. Dipole moments of HF calculated with different functionals.

Mol. Ref.  Basis Set  HF PBE B3LYP MP2 GOEP-MP2 phQHF ph@QPBE ph@B3LYP ppQHF ppQB3LYP
Def2-SVP  1.987 1.788 1.838 1.887  1.875 1.878  1.797 1.822 1.927 1.862

Def2-TZVP 2.016 1.875 1.921 1.941 1.932 1.940 1.869 1.891 1.983 1.923
HF 1.82 Def2-SVPD 1.962 1.771 1.828 1.829 1.805 1.842 1.755 1.782 1.880 1.836
Def2-TZVPD 1.921 1.740 1.796 1.806 1.786 1.827 1.746 1.771 1.857 1.805

Def2-TZVPPD 1.924 1.745 1.800 1.795 1.775 1.811 1.725 1.751 1.850 1.802
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FIG. 1. Basis set convergence test with H,O.

TABLE III. Dipole moments of HCI calculated with different functionals.

Mol. Ref. Basis Set HF B3LYP MP2 GOEP-MP2 ph@QHF ph@B3LYP pp@HF pp@B3LYP

Def2-SVP 1407 1.299 1.355 1.344 1.287 1.230 1.370 1.336
Def2-TZVP 1.292 1.230 1.282 1.272 1.231 1.200 1.282 1.278

HCI 1.08 Def2-SVPD 1.230 1.121 1.156 1.135 1.116 1.172 1.159
Def2-TZVPD 1.181 1.087 1.125 1.113 1.100 1.064 1.141 1.136
Def2-TZVPPD 1.182 1.087 1.101 1.088 1.069 1.026 1.125 1.115

TABLE IV. Dipole moments of H,S calculated with different functionals.

Mol. Ref.  Basis Set  HF B3LYP MP2 GOEP-MP2 ph@HF ph@B3LYP pp@HF pp@B3LYP

Def2-SVP  1.329 1.241 1.302 1.283 1.193 1.134 1.302 1.274

Def2-TZVP 1.170 1.115 1.185 1.179 1.119 1.099 1.175 1.185

H,S 0.97 Def2-SVPD 1.127 1.008 1.041 1.015 0.981 1.056 1.067

Def2-TZVPD 1.073 0.971 1.019 1.005 0.986 0.954 1.034 1.019
Def2-TZVPPD 1.072 0.968 0.989 0.970 0.942 0.900 1.011

TABLE V. Dipole moments of NH3 calculated with different functionals.

Mol. Ref. Basis Set HF B3LYP MP2 GOEP-MP2 ph@HF ph@B3LYP pp@QHF pp@B3LYP

Def2-SVP  1.806 1.702 1.763 1.747 1.731 1.686 1.780 1.744

Def2-TZVP 1.778 1.727 1.761 1.755 1.745 1.713 1.776 1.752

NH3 1.47 Def2-SVPD 1.669 1.569 1.584 1.558 1.584 1.536 1.614 1.579

Def2-TZVPD 1.630 1.527 1.552 1.529 1.564 1.520 1.586 1.553
Def2-TZVPPD 1.633 1.533 1.539 1.517 1.547 1.496 1.580




TABLE VI. Dipole moments of CO calculated with different functionals. For C and O atoms, Def2-TZVPD and Def2-TZVPPD
are same.

Mol. Ref. Basis Set HF B3sLYP MP2 GOEP-MP2 ph@HF ph@B3LYP pp@HF pp@B3LYP
Def2SVP 0233 0.218 0.405  0.418 0.116 0.206 0.128
Def2-TZVP 0.262 0.097 0.305  0.334 0.048 0.052 0.189
Def2-SVPD 0.238 0.113 0.322  0.343 0.077  0.205
Def2-TZVPD 0.261 0.091 0.293  0.323 0.039 0.124 0.043

CO 0.122

TABLE VII. Dipole moments of LiF calculated with different functionals.
Mol. Ref.  Basis Set  HF PBE B3LYP MP2 GOEP-MP2 ph@HF ph@PBE ph@B3LYP ppQHF pp@GPBE ppQB3LYP

Def2-SVP  6.363 5.454 5.663 5.840 5.846 6.075 5.762 5.881 6.098 5.890 5.950

Def2-TZVP 6.592 6.012 6.164 6.337 6.278 6.441 6.326 6.441 6.377 6.515

LiF 6.284 Def2-SVPD 6.528 6.161 6.260 6.388 6.338 6.426 6.318 6.360 6.430 6.315 6.340
Def2-TZVPD 6.484 6.123 6.220 6.338 6.287 6.387 6.316 6.386 6.355 6.300
Def2-TZVPPD 6.485 6.122 6.220 6.337 6.283 6.385 6.310 6.385 6.459 6.312
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