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I. DERIVATION

Here we derive in details the density of the physical system from the linear response theory for optimized effective
potential (OEP)[1–3] and generalized OEP (GOEP) methods[4]. The total energy functional is

Evext = Ts[ρ
σ
s (r, r′)] + J [ρs(r)] +

∫
drvext(r)ρs(r) + EDFA

xc , (1)

where the first three terms on the right hand side are the kinetic energy, Hartree energy, and external energy respec-
tively, which are explicit functionals of ρσs (r) and ρσs (r, r′); EDFA

xc is the exchange-correlation (XC) energy whose exact
functional form is unknown, three types of functionals will be discussed below, i.e. EDFA

xc [ρσs (r)], EDFA
xc [ρσs (r, r′)], and

EDFA
xc [{φpσ(r)}, vext(r)]. Here orbitals {φpσ(r)} and orbital energies {εpσ} are obtained from the following one-electron

Schrödinger equation

hσsφpσ = (−1

2
∇2 + vσs )φpσ = εpσφpσ. (2)

The determination of OEP is formulated as an optimization problem with the following construction for the OEP,

vσs (r) = vext(r) + vσHxc(r). (3)

Here the external potential vext(r) is deliberately separated from the total effective potential vσs (r). vext(r) remains
unchanged for a specific system. vσHxc(r) is the Hartree-exchange-correlation (Hxc) potential, which includes the rest
of the effective potential and is different for different methods.

For OEP, when the minimal energy is reached for a specific system, the stationary condition is

δEvext
δvσs (r)

=
δEvext
δvσHxc(r)

=
∑
p

∫
drdr′

δE

δφpσ(r)

(
δφpσ(r)

δvσs (r′)

)
+ c.c. = 0. (4)

In the direct optimization method of Yang and Wu[2, 5], vσs (r) is further selected as vσs (r) = v0(r) +
∑
t b
σ
t g(r) ,

where v0(r) is a fixed reference potential including the external potential, and {bσt } are the coefficients for the linear
combination of a set of basis functions {gt(r)}. This makes it more practical, because {gt(r)} only need to expand a
small part of the effective potential.

The GOEP, vσs (r, r′),on the other hand, is a nonlocal potential in space and can be represented in the orbital basis
as

vσs (r, r′) =
∑
pq

〈r|φpσ〉vσs,pq〈φqσ|r′〉, (5)

where p and q are orbital indices. Unlike the OEP method, the orbitals density matrix and orbitals from GOEP is
fully relaxed because there is no restriction of the locality in real space[4]. When the energy minimum is reached, the
derivatives below should be zero,

∂E

∂vσs,pq
= 0. (6)
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It has been proved that the optimization of the total energy with respect to the GOEP is equivalent to the orbital
optimization (OO) method[6], thus at the stationary point of GOEP, the orthonormalization constrained derivatives
of the total energy with respect to oribital obey[4](

δE

δφpσ(r)

)
O

= 0, (7)

where (δEtot/δφpσ(r))O is the energy functional derivative with respect to the orbital under the orthonormalization
constraint 〈φpσ|φqσ〉 = δpq[7], as indicated by the subscript O. Now we discuss the electron densities in three different
types of functionals.

A. When EDFA
xc is an explicit and continuous functional of the density ρσs (r), the total energy functional is

EDFA[ρσs (r, r′)] = Ts[ρ
σ
s (r, r′)] + J [ρs(r)] +

∫
drvext(r)ρs(r) + EDFA

xc [ρσs (r)]. (8)

The g.s. energy is

EDFA
v (N) = min

ρσs (r,r′)
EDFA[ρσs (r, r′)], (9)

which leads to one-electron Schrödinger equation with local potential. In this scenario, the nonlocal GOEP will reduce
to a local potential. Therefore, ρs(r) of Inv-OEP, OEP and GOEP are the same, which is equal to ρ(r) from the
linear response

ρ(r) =
δEDFA

v (N)

δvext(r)
= ρs(r). (10)

B. When EDFA
xc is an explicit and continuous functional of the noninteracting reference density matrix ρσs (r, r′), the

total energy functional is

EDFA[ρσs (r, r′)] = Ts[ρ
σ
s (r, r′)] + J [ρs(r)] +

∫
drvext(r)ρs(r) + EDFA

xc [ρσs (r, r′)]. (11)

Now, OEP and GKS/GOEP are not the same.
For OEP, the ground-state energy is the minimum with the local potential constraint,

EDFA
v (N) = min

vs(r)
EDFA[ρσs (r, r′)]. (12)

The density of the physical system is

ρ(r) =
δEDFA

v (N)

δvext(r)

= ρs(r) +
∑
iσ

[∫
dr3dr4

(
δEDFA[ρσs (r1, r2)]

δφiσ(r3)

)
O

(
δφiσ(r3)

δvσs (r4)

)(
δvσs (r4)

δvext(r)

)
+ c.c.

]
(13)

= ρs(r) +
∑
iσ

[∫
dr3

(
δEDFA[ρσs (r1, r2)]

δφiσ(r3)

)
O

(
δφiσ(r3)

δvσs (r)

)
+ c.c.

]
(14)

We now define the effective (nonlocal) one-electron effective Hamiltonian hσeff = − 1
2∇

2 + vσeff (r1, r2) through(
δEDFA[ρσs (r1, r2)]

δφ∗iσ(r3)

)
= hσeffφiσ(r3) =< r3|hσeffφiσ > . (15)

For any hybrid functional, hσeff is just the nonlocal GKS Hamiltonian.
(
δEDFA[ρσs (r1,r2)]

δφ∗iσ(r3)

)
O

=< r3|(I −Pσ)hσeffφiσ >,

where Pσ =
∑
i |φiσ 〉 〈φiσ| [7]. Using the first-order perturbation theory, we have

δφiσ(r3)

δvσs (r)
=
∑
q 6=i

φqσ(r3)
φ∗qσ(r)φiσ(r)

εiσ − εqσ
. (16)
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Combing Eqs. 13,15, and 16, we obtain

ρ(r) =
δEDFA

v (N)

δvext(r)

= ρs(r) +
∑

i,a6=i,σ

[
〈φiσ|hσeff |φaσ〉

φ∗aσ(r)φiσ(r)

εiσ − εaσ
+ c.c.

]
(17)

This is the density of the physical system for functionals of the density matrix like hybrid functionals.
With GOEP/OO calculations, the ground-state energy is

EDFA
v (N) = min

vσs (r,r′)
EDFA[ρσs (r, r′)] = min

φpσ(r)
EDFA[ρσs (r, r′)], (18)

which is equivalent to the GKS method with a nonlocal XC potential. The density of the physical system is

ρ(r) =
δEDFA

v (N)

δvext(r)

= ρs(r) +
∑
i

[∫
dr3dr4dr5

(
δEDFA[ρσs (r1, r2)]

δφiσ(r3)

)
O

δφiσ(r3)

δvσs (r4, r5)

δvσs (r4, r5)

δvext(r)
+ c.c.

]
= ρs(r). (19)

Therefore, GOEP and GKS fully minimize the total energy and give the density of the physical system as ρs(r).
C. When EDFA

xc is an implicit functional of the noninteracting reference density matrix ρσs (r, r′), and having explicit
dependence on orbitals {φpσ(r)} and the external potential vext(r) (e.g. through eigenvalues), the total energy
functional is

EDFA
vext [{φpσ(r)}] = Ts[ρ

σ
s (r, r′)] + J [ρs(r)] +

∫
drvext(r)ρs(r) + EDFA

xc [{φpσ(r)}, vext(r)]. (20)

For OEP, the approximate ground-state energy is minimization with local potential constraint,

EDFA
vext (N) = min

vσs (r)
EDFA
vext [{φpσ(r)}]. (21)

The density of the physical system is

ρ(r) =
δEDFA

vext (N

δvext(r)

= ρs(r) +
∑
iσ

[∫
dr3dr4

(
δEDFA

vext [{φpσ(r)}]
δφpσ(r3)

)
O

(
δφpσ(r3)

δvσs (r4)

)(
δvσs (r4)

δvext(r)

)
+ c.c.

]
+
δEDFA

xc [{φpσ(r)}, vext(r)]

δvext(r)

(22)

= ρs(r) +
∑
pσ

[∫
dr3

(
δEDFA[ρσs (r1, r2)]

δφpσ(r3)

)
O

(
δφpσ(r3)

δvσs (r)

)
+ c.c.

]
+
δEDFA

xc [{φpσ(r)}, vext(r)]

δvext(r)

= ρs(r) +
∑

p,q 6=p,σ

[∫
dr3

(
δEDFA[ρσs (r1, r2)]

δφpσ(r3)

)
O

φqσ(r3)
φ∗qσ(r)φpσ(r)

εpσ − εqσ
+ c.c.

]
+
δEDFA

xc [{φpσ(r)}, vext(r)]

δvext(r)
(23)

Thus, the density of the physical system is not the same as the reference density ρs(r) from OEP.
With GOEP or OO calculations, the ground-state energy is

EDFA
vext (N) = min

vσs (r,r′)
EDFA
vext [{φpσ(r)}] = min

φpσ(r)
EDFA
vext [{φpσ(r)}], (24)

GOEP minimizes the total energy (without constraint on the potential being local). The density of the physical
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system is

ρ(r) =
δEDFA

v (N)

δvext(r)

= ρs(r) +
∑
pσ

[∫
dr3dr4dr5

(
δEDFA

vext [{φpσ(r)}]
δφpσ(r3)

)
O

δφpσ(r3)

δvσs (r4, r5)

δvσs (r4, r5)

δvext(r)
+ c.c.

]

+
δEDFA

xc [{φpσ(r)}, vext(r)]

δvext(r)

= ρs(r) +
δEDFA

xc [{φpσ(r)}, vext(r)]

δvext(r)
(25)

Therefore, the GOEP/OO reference density ρs(r) is not equal to the density of the physical system.

II. DENSITY OF PH-RPA

To illustrate our idea, we derive and calculate the density of the physical system with ph-RPA, MP2 and pp-RPA
under the GOEP or OO formulation and compare it with the noninteracting reference density. Ph-RPA is denoted
here as RPA for simplicity. The total energy of RPA is

Etot = EHF + ERPA
c . (26)

The first term, EHF, is the HF total energy evaluated with the reference DFA ρs(r
′, r); while the second term is the

RPA correlation energy

ERPA
c =

1

2

∑
n>0

ωn −
1

2
TrA

=
1

2

∑
n>0

∑
ai,bj

[(Xn)∗aiAai,bj(Xn)bj + (Xn)∗aiBai,bj(Yn)bj

+ (Yn)∗aiBai,bj(Xn)bj + (Yn)∗aiAai,bj(Yn)bj ]−
1

2

∑
ai

Aai,ai,

(27)

with A and B being the RPA matrix components

Aai,bj = habδij − hijδab + 〈aj|ib〉;
Bai,bj = 〈ab|ij〉.

(28)

Here h is the DFA Hamiltonian of the noninteracting reference system. Xn and Yn are eigenvectors of the RPA matrix(
A B
−B† −A†

)(
Xn

Yn

)
= ωn

(
Xn

Yn

)
. (29)

At the GOEP stationary point of the RPA energy functional, the density of the physical system derived from Eq. 25
takes the following expression

ρRPA(x) =
∑
i

φi(x)φ∗i (x) +
∑
ij

DRPA
ij φj(x)φ∗i (x) +

∑
ab

DRPA
ab φb(x)φ∗a(x). (30)

Here we define DRPA
ij and DRPA

ab as the occupied-occupied and virtual-virtual blocks of the RPA density matrix:

DRPA
ij = −1

2

∑
a

{∑
n>0

[(Yn)ai(Yn)aj + (Xn)ai(Xn)aj ]− δij

}
;

DRPA
ab =

1

2

∑
i

{∑
n>0

[(Yn)ai(Yn)bi + (Xn)ai(Xn)bi]− δab

}
.

(31)

The first term in Eq. 30 is the density of the reference non-interaction system. The latter two terms originate from
the external potential dependence of the RPA correlation energy. It is worth noting that the density of the physical
system does not have any contribution from the occupied-virtual block.
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III. DENSITY OF MP2

Here we discuss the MP2 correlation energy functional. In order to keep the total energy invariant with respect to
orbital rotations within each subspace (occupied or virtual), we need to start from the Hylleraas function representation
of the MP2 energy[8]. The Hylleraas function can be expanded by orbitals and the Fock operator,

EMP2
c =

1

4

∑
ijab

tijab〈ij||ab〉+ tij∗ab 〈ab||ij〉+
∑
ij

DMP2
ij Fij +

∑
ab

DMP2
ab Fab (32)

where i, j, k, · · · represent occupied orbitals and a, b, c, · · · represent virtual orbitals. In Eq. 32, F is the Fock operator,
t is the MP2 wavefunction amplitude, and D is the MP2 density block. If the orbitals diagonalize the occupied and
virtual subspaces of F , namely

Fij = δijFii = εi,

Fab = δabFaa = εa
(33)

the wavefunction amplitude t is then

tijab = − 〈ij||ab〉
εa + εb − εi − εj

(34)

And the MP2 density blocks are

DMP2
ij = −1

2

∑
kab

tikabt
jk∗
ab

DMP2
ab =

1

2

∑
ijc

tij∗ac t
ij
bc

(35)

The total energy of MP2 is

Etot = EHF + EMP2
c (36)

Note that the wavefunction amplitudes t always obey the condition that ∂Etot/∂tijab = 0. At the SCF solution, the
electron density is further expanded as

ρMP2(x) =
∑
i

φi(x)φ∗i (x) +
∑
ij

DMP2
ij φj(x)φ∗i (x) +

∑
ab

DMP2
ab φb(x)φ∗a(x) (37)

The first term in Eq. 37 is the non-interacting reference density. Notice that the non-interacting reference density is
not the density of the physical system for MP2 functional.

IV. DENSITY OF PP-RPA

Here we discuss the RPA correlation energy functional in the particle-particle channel, denoted as pp-RPA. The
eigenvalue equation for pp-RPA is

ωn =
(
X†n Y†n

)(A B
B† C

)(
Xn

Yn

)
(38)

where

Aab,cd = hacδbd + hbdδac +
1

2
〈ab||cd〉

Bab,ij =
1

2
〈ab||ij〉

Cij,kl = −hikδjl − hjlδik +
1

2
〈ij||kl〉

(39)
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The pp-RPA correlation energy [9] is

Ec =
∑
n

ωN+2
n − TrA (40)

The eigenvalue part is

ωn = X†nAXn + X†nBYn + Y†nB
†Xn + Y†nCYn

=
∑

a>b,c>d

(Xn)∗abAab,cd(Xn)cd +
∑

a>b,i>j

(Xn)∗abBab,ij(Yn)ij

+ (Yn)∗ijBij,ab(Xn)ab +
∑

i>j,k>l

(Yn)∗ijCij,kl(Yn)kl

(41)

The corresponding derivative is

part1 =
∑

a>b,c>d

(Xn)∗ab(φ
∗
aφcδbd + φ∗bφdδac)(Xn)cd −

∑
i>j,k>l

(Yn)∗ij(φ
∗
iφkδjl + φ∗jφlδik)(Yn)kl (42)

The trace part is

TrA =
∑
a>b

Faa + Fbb + 〈ab||ab〉+ spin β channel +
∑
ab̄

Faa + Fb̄b̄ + 〈ab̄|ab̄〉 (43)

The corresponding derivative is

part2 =
∑
a>b

(φaφ
∗
a + φbφ

∗
b) + spin β channel +

∑
ab̄

(φaφ
∗
a + φb̄φ

∗
b̄) (44)

And plus the reference density part ρref
s (x) =

∑occ
i φi(x)φ∗i (x).

V. ORIGINAL DATA

All calculations were performed in the QM4D package[10]. We here list all data mentioned in the main text. The
notation for RPA is different from the main text because here we calculate the dipoles with both ph- and pp-RPA.
Here, ph or pp@X (where X is the functional of the chosen reference density functional) refer to the ph- or pp-RPA
density of the physical system calculated with our GOEP method. In addition, the MP2 column refers to the MP2
density calculated with the couple perturbed Hartree Fock equation, while the GOEP-MP2 column refers to our GOEP
calculations with MP2. In the Supplementary Materials, We only reported the dipole moments with the density of the
physical system, not the noninteracting reference density. Some elements are left blank because imaginary eigenvalues
were observed while performing the GOEP calculations The experimental reference data are from CCCBDB[11].

We first tested the basis set convergence with water molecule (Fig. 1). Diffusion basis functions are important, or
the dipole moment can be highly overestimated. Def2-TZVPD can be considered as converged (within 0.02 Debye),
which was used for all the calculations in the main text.

TABLE I. Dipole moments of H2O calculated with different functionals.

Mol. Ref. Basis Set HF PBE B3LYP MP2 GOEP-MP2 ph@HF ph@PBE ph@B3LYP pp@HF pp@PBE pp@B3LYP

H2O 1.855

Def2-SVP 2.127 1.929 1.976 2.040 2.025 2.020 1.932 1.960 2.076 1.994 2.011
Def2-TZVP 2.151 2.020 2.065 2.103 2.093 2.089 2.019 2.041 2.132 2.083 2.082
Def2-SVPD 2.027 1.828 1.888 1.890 1.861 1.902 1.807 1.837 1.944 1.864 1.885

Def2-TZVPD 1.977 1.789 1.848 1.864 1.838 1.886 1.800 1.827 1.915 1.838 1.858
Def2-TZVPPD 1.977 1.790 1.849 1.845 1.819 1.861 1.767 1.796 1.904 1.833 1.845

TABLE II. Dipole moments of HF calculated with different functionals.

Mol. Ref. Basis Set HF PBE B3LYP MP2 GOEP-MP2 ph@HF ph@PBE ph@B3LYP pp@HF pp@B3LYP

HF 1.82

Def2-SVP 1.987 1.788 1.838 1.887 1.875 1.878 1.797 1.822 1.927 1.862
Def2-TZVP 2.016 1.875 1.921 1.941 1.932 1.940 1.869 1.891 1.983 1.923
Def2-SVPD 1.962 1.771 1.828 1.829 1.805 1.842 1.755 1.782 1.880 1.836

Def2-TZVPD 1.921 1.740 1.796 1.806 1.786 1.827 1.746 1.771 1.857 1.805
Def2-TZVPPD 1.924 1.745 1.800 1.795 1.775 1.811 1.725 1.751 1.850 1.802
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FIG. 1. Basis set convergence test with H2O.

TABLE III. Dipole moments of HCl calculated with different functionals.

Mol. Ref. Basis Set HF B3LYP MP2 GOEP-MP2 ph@HF ph@B3LYP pp@HF pp@B3LYP

HCl 1.08

Def2-SVP 1.407 1.299 1.355 1.344 1.287 1.230 1.370 1.336
Def2-TZVP 1.292 1.230 1.282 1.272 1.231 1.200 1.282 1.278
Def2-SVPD 1.230 1.121 1.156 1.135 1.116 1.172 1.159

Def2-TZVPD 1.181 1.087 1.125 1.113 1.100 1.064 1.141 1.136
Def2-TZVPPD 1.182 1.087 1.101 1.088 1.069 1.026 1.125 1.115

TABLE IV. Dipole moments of H2S calculated with different functionals.

Mol. Ref. Basis Set HF B3LYP MP2 GOEP-MP2 ph@HF ph@B3LYP pp@HF pp@B3LYP

H2S 0.97

Def2-SVP 1.329 1.241 1.302 1.283 1.193 1.134 1.302 1.274
Def2-TZVP 1.170 1.115 1.185 1.179 1.119 1.099 1.175 1.185
Def2-SVPD 1.127 1.008 1.041 1.015 0.981 1.056 1.067

Def2-TZVPD 1.073 0.971 1.019 1.005 0.986 0.954 1.034 1.019
Def2-TZVPPD 1.072 0.968 0.989 0.970 0.942 0.900 1.011

TABLE V. Dipole moments of NH3 calculated with different functionals.

Mol. Ref. Basis Set HF B3LYP MP2 GOEP-MP2 ph@HF ph@B3LYP pp@HF pp@B3LYP

NH3 1.47

Def2-SVP 1.806 1.702 1.763 1.747 1.731 1.686 1.780 1.744
Def2-TZVP 1.778 1.727 1.761 1.755 1.745 1.713 1.776 1.752
Def2-SVPD 1.669 1.569 1.584 1.558 1.584 1.536 1.614 1.579

Def2-TZVPD 1.630 1.527 1.552 1.529 1.564 1.520 1.586 1.553
Def2-TZVPPD 1.633 1.533 1.539 1.517 1.547 1.496 1.580
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TABLE VI. Dipole moments of CO calculated with different functionals. For C and O atoms, Def2-TZVPD and Def2-TZVPPD
are same.

Mol. Ref. Basis Set HF B3LYP MP2 GOEP-MP2 ph@HF ph@B3LYP pp@HF pp@B3LYP

CO 0.122

Def2-SVP 0.233 0.218 0.405 0.418 0.116 0.206 0.128
Def2-TZVP 0.262 0.097 0.305 0.334 0.048 0.052 0.189
Def2-SVPD 0.238 0.113 0.322 0.343 0.077 0.205

Def2-TZVPD 0.261 0.091 0.293 0.323 0.039 0.124 0.043

TABLE VII. Dipole moments of LiF calculated with different functionals.

Mol. Ref. Basis Set HF PBE B3LYP MP2 GOEP-MP2 ph@HF ph@PBE ph@B3LYP pp@HF pp@PBE pp@B3LYP

LiF 6.284

Def2-SVP 6.363 5.454 5.663 5.840 5.846 6.075 5.762 5.881 6.098 5.890 5.950
Def2-TZVP 6.592 6.012 6.164 6.337 6.278 6.441 6.326 6.441 6.377 6.515
Def2-SVPD 6.528 6.161 6.260 6.388 6.338 6.426 6.318 6.360 6.430 6.315 6.340

Def2-TZVPD 6.484 6.123 6.220 6.338 6.287 6.387 6.316 6.386 6.355 6.300
Def2-TZVPPD 6.485 6.122 6.220 6.337 6.283 6.385 6.310 6.385 6.459 6.312
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