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Figure S1 Delay-dependent KER distributions for In+ ions (n=1-10). These are obtained through angular integration of the appropriate
time-resolved ion images, following Abel inversion using the pBASEX algorithm. Negative delays correspond to the FEL probe pulse
arriving before the IR pump pulse, and vice versa. The I7) ion overlaps in time-of-flight with water, leading to a prominent low KER
background. The I8+, I9+ and I10+ ions overlap in time-of-flight with CH+

x ions, leading to some false signal at high KER.
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Figure S2 Delay-dependent velocity distributions for In+ ions (n=1-10). These are obtained through angular integration of the appropriate
time-resolved ion images, following Abel inversion using the pBASEX algorithm. Intensities are weighted by a factor of 1/velocity in order
to enhance visibility of the low velocity features (referred to as Channel III in the main text). Negative delays correspond to the FEL
probe pulse arriving before the IR pump pulse, and vice versa. The I7) ion overlaps in time-of-flight with water, leading to a prominent
low velocity background. The I8+, I9+ and I10+ ions overlap in time-of-flight with CH+

x ions, leading to some false signal at high velocity.
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Figure S3 XUV-only KER spectra for In+ ions (n=1-10) ions. These are obtained through angular integration of the appropriate time-
resolved ion images, following Abel inversion using the pBASEX algorithm. The I7) ion overlaps in time-of-flight with water, leading to a
prominent low KER background. The I8+, I9+ and I10+ ions overlap in time-of-flight with CH+

x ions, leading to some false signal at high
KER.
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Figure S4 IR-only velocity-map ion images (left) and KER distributions (right) for the CH+
3 , I

2+ and I+ ions. These data were recorded
with lower spectrometer voltages (half those employed for the data presented in the main text) in order to expand the velocity-map images.

XUV Early 200-400fs >2ps

Figure S5 Delay-dependent raw (unprocessed) velocity-map ion images of the I5+ ion. These highlight the significant anisotropy in parent
Coulomb explosion feature in the 200-400 fs range, arising from impulsive alignment by the IR pulse.

5



0 5 10 15 20 25

C-I Distance / Å
18

20

22

24

26

28

30

32

E
ne

rg
y 

/ e
V

3P2

3P0

3P1

1D2

1S0

Figure S6 Potential energy curves of the CH3I2+ ion computed by Corrales et. al1. Different potentials are labelled by the state of the I+

cation they correlate with.
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Figure S7 The C-I bond distance as a function of delay for classical trajectory calculations carried out on the computed CH3I2+ potentials,
as described in Section 4.2.2 of the main text. States correlating with 3P2 I+ with bound character are excluded. For comparison, a
trajectory assuming instant acceleration to an asymptotic KER of 5.20 eV is shown in black. A trajectory assuming a purely Coulomb
(1,1) potential energy surface is also shown in gold.
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Figure S8 KER as a function of pump-probe delay (0-200fs range) for the trajectories shown in Figure S7, for XUV ionization of nascent
I+ to I5+ as an example, which repel the recoiling CH3 ion according to Coulomb’s Law. Trajectories on the computed CH3I2+ potentials
exhibit higher KER in the ∼25-200 fs delay range, as discussed in the main text.
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Figure S9 KER as a function of pump-probe delay (0-1500fs range) for the trajectories shown in Figure S7, for XUV ionization of nascent
I+ to I5+, which repel the recoiling CH3 ion according to Coulomb’s Law.
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