# - Supplementary Information -

# Renewable Carbon Feedstock for Polymers: Environmental Benefits from the Synergistic Use of Biomass and CO<sub>2</sub>

Autors: M. Bachmann, L. Müller, B. Winter, R. Meys, A. Kätelhön, A. Bardow

#### **1** Data sources for life cycle inventory

**Table S1:** Summary of flows, production technologies and literature sources of the bottom-up model of thepolyurethane supply chain.

| name of flow              | production technologies                                                                                                                                             | source                                                               | comment                                                                                                                                                                                                    |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ammonia                   | European market for ammonia                                                                                                                                         | ecoinvent 3.5 - cut-off <sup>1</sup>                                 |                                                                                                                                                                                                            |
| ash                       | European market for wood ash mixture, pure                                                                                                                          | ecoinvent 3.5 - cut-off <sup>1</sup>                                 |                                                                                                                                                                                                            |
| butane                    | global market for butane                                                                                                                                            | ecoinvent 3.5 - cut-off <sup>1</sup>                                 |                                                                                                                                                                                                            |
| calcium dioxide           | European market for quicklime, milled, packed                                                                                                                       | ecoinvent 3.5 - cut-off <sup>1</sup>                                 |                                                                                                                                                                                                            |
| carbon dioxide            | by direct air capture                                                                                                                                               | von der Assen et al. (2016) <sup>2</sup>                             | Details see below                                                                                                                                                                                          |
|                           | from cement plant                                                                                                                                                   | von der Assen et al. $(2016)^2$                                      | Details see below                                                                                                                                                                                          |
| carbon monoxide           | reverse water gas shift                                                                                                                                             | Sternberg et al. (2015) <sup>3</sup>                                 |                                                                                                                                                                                                            |
|                           | dry reforming                                                                                                                                                       | CO2RRECT <sup>4</sup>                                                |                                                                                                                                                                                                            |
|                           | separation of syngas via partial condensation                                                                                                                       | IHS PEP Yearbook <sup>5</sup>                                        |                                                                                                                                                                                                            |
| caustic soda              | global market for sodium hydroxide, without water, in 50 % solution state                                                                                           | ecoinvent 3.5 - cut-off <sup>1</sup>                                 |                                                                                                                                                                                                            |
| chlorine                  | European market for chlorine                                                                                                                                        | ecoinvent 3.5 - cut-off <sup>1</sup>                                 |                                                                                                                                                                                                            |
| cooling water             | global market for water, decarbonized, at user                                                                                                                      | ecoinvent 3.5 - cut-off <sup>1</sup>                                 |                                                                                                                                                                                                            |
| deionized water           | European market for water, deionized, from tap water, at user                                                                                                       | ecoinvent 3.5 - cut-off <sup>1</sup>                                 |                                                                                                                                                                                                            |
| diammonium<br>phosphate   | European diammonium phosphate production                                                                                                                            | ecoinvent 3.5 - cut-off <sup>1</sup>                                 |                                                                                                                                                                                                            |
| dinitrotoluene            | From toluene by nitration                                                                                                                                           | IHS PEP Yearbook <sup>5</sup>                                        |                                                                                                                                                                                                            |
| dimethyl carbonate        | from vapor-phase oxidative carbonylation                                                                                                                            | IHS PEP Yearbook <sup>5</sup>                                        |                                                                                                                                                                                                            |
|                           | from liquid-phase oxidative carbonylation                                                                                                                           | IHS PEP Yearbook <sup>5</sup>                                        |                                                                                                                                                                                                            |
|                           | from methanol and urea                                                                                                                                              | IHS PEP Yearbook <sup>5</sup>                                        |                                                                                                                                                                                                            |
| electricity               | European grid mix                                                                                                                                                   | Müller et al. <sup>6</sup>                                           |                                                                                                                                                                                                            |
| electricity,<br>renewable | Depends on scenario                                                                                                                                                 | Müller et al. <sup>6</sup> ,<br>ecoinvent 3.5 - cut-off <sup>1</sup> | For all other environmental<br>impacts except climate change<br>in the full decarbonized<br>scenario, the ecoinvent data<br>set "electricity production,<br>wind, >3MW turbine,<br>onshore, RoW" was used. |
| ethanol                   | from fermentation of Miscanthus, carbon<br>dioxide from fermentation is captured, flue gas<br>is released to environment<br>from fermentation of Miscanthus, carbon |                                                                      | Details see below                                                                                                                                                                                          |
|                           | dioxide from fermentation and flue gas is<br>captured                                                                                                               |                                                                      | Details see below                                                                                                                                                                                          |
| ethylbenzene              | European market for ethylene                                                                                                                                        | ecoinvent 3.5 - cut-off <sup>1</sup>                                 |                                                                                                                                                                                                            |
| ethylene                  | global market for ethylene                                                                                                                                          | ecoinvent 3.5 - cut-off <sup>1</sup>                                 |                                                                                                                                                                                                            |
|                           |                                                                                                                                                                     |                                                                      |                                                                                                                                                                                                            |

| name of flow                      | production technologies                                                                 | source                                                         | comment                                             |
|-----------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|
|                                   | from ethanol by adiabatic fixed-bed catalytic dehydration                               | IHS PEP Yearbook <sup>5</sup>                                  |                                                     |
|                                   | from methanol by MTO process                                                            | IHS PEP Yearbook <sup>5</sup>                                  | Details see below                                   |
|                                   | from natural gas by oxidative coupling                                                  | IHS PEP Yearbook <sup>5</sup>                                  |                                                     |
| ethylene oxide                    | from ethylene by oxidation                                                              | IHS PEP Yearbook <sup>5</sup>                                  |                                                     |
| ethylene glycol                   | global market for ethylene glycol                                                       | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| excess heat                       | European market for heat, district or industrial, natural gas                           | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| fuel oil                          | European market for light fuel oil                                                      | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| glucose                           | global market for glucose                                                               | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| glycerol                          | European market for glycerine                                                           | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| hydrochloric acid                 | European market for hydrochloric acid, without water, in 30% solution state             | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| hudrogon                          | from steam reforming of natural gas                                                     | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| nydrogen                          | from electrolysis                                                                       | U.S. Department of Energy <sup>7</sup>                         |                                                     |
| inert gas                         | European market for nitrogen, liquid                                                    | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| mathana                           | German market for natural gas, high pressure                                            | ecoinvent 3.5 - cut-off <sup>1</sup>                           | no data for global or European market available     |
| memane                            | from carbon dioxide (Sabatier reaction)                                                 | Müller et al. (2013) <sup>8</sup>                              |                                                     |
|                                   | global market for methanol                                                              | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
|                                   | from syngas via JM/ICI/DPT technology                                                   | IHS PEP Yearbook <sup>5</sup>                                  |                                                     |
| methanol                          | from natural via JM/ICI/DPT technology                                                  | IHS PEP Yearbook <sup>5</sup>                                  |                                                     |
|                                   | from carbon dioxide and hydrogen (direct hydrogenation)                                 | Rihko-Struckmann (2010)9                                       |                                                     |
| miscanthus, at farm gate          | global market for Miscanthus, chopped                                                   | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| miscanthus, at<br>refinery        | miscanthus transportation, average of 300 km                                            | Styles et al. (2008) <sup>10</sup>                             |                                                     |
| miscanthus, stored<br>at refinery | miscanthus storage, ambient storage                                                     | Rentizelas et al. (2009) <sup>11</sup>                         |                                                     |
| natural gas                       | German market for natural gas, high pressure                                            | ecoinvent 3.5 - cut-off <sup>1</sup>                           | no datat for global or<br>European market available |
| nitric acid                       | European market for nitric acid, without water,<br>in 50% solution state                | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| nitric oxide                      | global market for nitric oxide                                                          | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| nitrogen                          | European market for nitrogen, liquid                                                    | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| oxygen                            | European market for oxygen, liquid                                                      | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| pentane                           | global market for pentane                                                               | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| polyol (PO)                       | from propylene oxid, glycerol as starter                                                | von der Assen et al. (2015) <sup>12</sup>                      |                                                     |
| polyol (PO/CO <sub>2</sub> )      | from propylene oxide and carbon dioxide, glycerol as starter                            | Covestro Deutschland AG (2018) <sup>13</sup>                   |                                                     |
| polyol (PO/EO)                    | from propylene oxide and ethylene oxide, glycerol as starter                            | Ionescu (2016) <sup>14</sup>                                   |                                                     |
| polyurethane,<br>flexible foam    | from polyol and TDI                                                                     | Ecoinvent 3.5 - UPR <sup>1</sup>                               |                                                     |
| process water                     | global market for water, decarbonised, at user                                          | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| propane                           | global market for propane                                                               | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
| propylene                         | European market for propylene                                                           | ecoinvent 3.5 - cut-off <sup>1</sup>                           |                                                     |
|                                   | from ethylene via dimerization and olefin<br>conversion technology by Lummus Technology | IHS PEP Yearbook <sup>5</sup>                                  |                                                     |
| propylene<br>dichloride           | technical chlorination of propane                                                       | stoichiometric calculation,<br>hydrochloric acid as co-product |                                                     |
| propylene oxide                   | from conventional chlorohydrin process                                                  | IHS PEP Yearbook <sup>5</sup>                                  |                                                     |

| name of flow                                                     | production technologies                                                                                           | source                                  | comment           |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------|
|                                                                  | from BASF-DOW HPPO process                                                                                        | IHS PEP Yearbook <sup>5</sup>           |                   |
|                                                                  | from Lyondell Oxirane process with styrene as<br>by-product                                                       | IHS PEP Yearbook <sup>5</sup>           | Details see below |
| rapeseed oil methyl ester                                        | global market for vegetable oil methyl ester                                                                      | ecoinvent 3.5 - cut-off <sup>1</sup>    |                   |
| steam                                                            | global market for steam, in chemical industry                                                                     | ecoinvent 3.5 - cut-off <sup>1</sup>    |                   |
| styrene                                                          | global market for styrene                                                                                         | ecoinvent 3.5 - cut-off <sup>1</sup>    |                   |
| sulfuric acid                                                    | European market for sulfuric acid                                                                                 | ecoinvent 3.5 - cut-off <sup>1</sup>    |                   |
| syngas (molar<br>hydrogen-to-carbon<br>monoxide ratio of<br>2:1) | from natural gas by partial oxidation                                                                             | IHS PEP Yearbook <sup>5</sup>           |                   |
|                                                                  | from natural gas by steam reforming with<br>carbon dioxide import                                                 | IHS PEP Yearbook <sup>5</sup>           |                   |
|                                                                  | from gasification of Miscanthus in pressurized<br>direct oxygen-steam blown circulating fluidized<br>bed gasifier |                                         | Details see below |
|                                                                  | from gasification of Miscanthus in dual fluidized bed gasifier                                                    |                                         | Details see below |
| toluene                                                          | European market for toluene, liquid                                                                               | ecoinvent 3.5 - cut-off <sup>1</sup>    |                   |
|                                                                  | $9 \text{ CO}_2 + 26 \text{ H}_2 \rightarrow \text{C}_7 \text{H}_8 + 18 \text{ H}_2 \text{O} + 2 \text{ CH}_4$    | Low-TRL CCU technology <sup>15,16</sup> |                   |
|                                                                  | methanol-to-aromatics                                                                                             | High-TRL CCU technology <sup>17</sup>   |                   |
| toluene<br>diisocyanate                                          | from phosgenation                                                                                                 | IHS PEP Yearbook <sup>5</sup>           |                   |
|                                                                  | from dinitrotoluene                                                                                               | IHS PEP Yearbook <sup>5</sup>           |                   |
| transportation of miscanthus                                     | European market for transport, freight, lorry >32<br>metric ton, EURO5                                            | ecoinvent 3.5 - cut-off <sup>1</sup>    |                   |
| urea                                                             | from mitsui toatsu process                                                                                        | IHS PEP Yearbook <sup>5</sup> wan       |                   |

#### 1.1 Carbon dioxide capture and transportation

For carbon dioxide (CO<sub>2</sub>) supply, we consider biomass utilization technologies, cement plants, and ambient air. In both biomass utilization technologies, namely fermentation and gasification, CO<sub>2</sub> is obtained in high concentrations at ambient pressure. In all cases, to use CO<sub>2</sub> as feedstock, it is compressed to 110 bar and then transported to the production site. We account for the energy demand for compression, according to Farla et al.<sup>18</sup>, and neglected all other environmental impacts of compression and transportation. Excess CO<sub>2</sub> from biomass utilization technologies, which is not used in CCU processes, is released into the environment. For the supply of CO<sub>2</sub> from cement plants and ambient air by direct air capture, we use average values from von der Assen et al.<sup>2</sup>

#### 1.2 Methanol-to-Olefins processes

We consider two methanol-to-olefins (MtO) processes with different product ratios of ethylene to propylene. Data for the process with an ethylene to propylene molar ratio of 2:1 are based on a patent from Union Carbide and UOP. In contrast, data for a molar ratio of 1:1 are based on the DMTO-II technology. Despite the higher propylene yield, the Union Carbide and UOP process is selected in the optimization due to its lower heat and power demand.

#### **1.3 Propylene oxide production**

For propylene oxide production, we consider the chlorohydrin, HPPO, and the oxirane process. However, we only consider the oxirane process with styrol as by-product. The oxirane process with tert-butanol as a by-product is not considered, since no data are available that sufficiently describe the substitution of tert-butanol. However, the oxirane process with tert-butanol as a by-product may be environmentally beneficial if sufficient tert-butanol can be sold on the market.

#### 1.4 Miscanthus gasification for syngas production

We consider two technologies for the gasification of Miscanthus to syngas: a pressurized direct oxygen-steam blown circulating fluidized bed (CFB) gasifier and an atmospheric indirect airblown dual fluidized bed (DFB) gasifier. The CFB gasifier model is based on a concept by Hannula et al.<sup>19</sup> and the associated process layout by Isaksson et al.<sup>20</sup>. The dryer and the gasifier models are taken from Arvidsson et al.<sup>21</sup> The reformer model is based on data published by the National Renewable Energy Laboratory.<sup>22</sup> LCI data for the DFB gasifier were generated using a model developed by Arvidsson et al., based on the technology used in the Gothenburg Biomass Gasification project.<sup>23</sup> Both gasification models are modified to account for Miscanthus's higher ash content compared to wood chips and wood pellets conventionally used for gasification. The produced syngas has a hydrogen to carbon monoxide ratio of 2:1. Additional CO<sub>2</sub> from syngas upgrading is captured and can be used in the foreground system. We modeled a simplified heat integration using a Grand Composite Curve. Excess heat substitutes district or industrial heat. Matthias Hermesmann performed the modeling of the gasification process under the supervision of Johan Ahlström, Stavros Papadokonstantakis, and Harvey Simon at the Chalmers University of Technology.

### 1.5 Miscanthus fermentation for ethanol production

The ethanol production from Miscanthus is based on the 2011 design report by the National Renewable Energy Laboratory<sup>24</sup> and the associated aspen model. The aspen model only considers corn stover as feedstock for ethanol production. We modified the lignocellulosic feedstock's composition in the aspen model to reflect the composition of Miscanthus. Miscanthus is used to supply both feedstock for fermentation and process heat. Excess heat is used to produce electricity, which can be used in other processes within the foreground system or substitutes grid electricity. The fermentation vents a high concentrated CO<sub>2</sub> stream that can be compressed and used in the foreground system.

In addition to  $CO_2$  released during the fermentation, additional  $CO_2$  is released as flue gas during lignin and other combustibles' incineration. However, the flue gas has a much lower  $CO_2$  concentration than the fermentation  $CO_2$  steam and is thus harder to purify. Therefore, we added another data set for the fermentation process, where we added  $CO_2$  capture from flue gas. For  $CO_2$  capture from flue gas, we assumed the same heat and electricity requirements as for the  $CO_2$  capture from cement plants<sup>2</sup>, since both flue gases have similar  $CO_2$  concentrations. The heat required for  $CO_2$  capture is supplied by excess heat of the fermentation process. The modified model, therefore, does not produce any excess electricity. The captured  $CO_2$  can be compressed and used in the foreground system.

## 1.6 Biomass-to-heat efficiency

We calculated the biomass-to-steam efficiency with a steam boiler efficiency of 95 % and an energy content of steam of 2.75 MJ/kg. We used a carbon footprint of Miscanthus of - 1.5 kg<sub>CO2-eq</sub>/kg<sub>Biomass</sub> for calculation and assumed an average heating value of 20 MJ/kg<sub>Biomass</sub><sup>25</sup>. GHG emissions of fossil-based steam is taken from ecoinvent 3.5 - cut-off<sup>1</sup>. We neglect the transportation and storage of Miscanthus in this calculation.

#### 2 Miscanthus as a feedstock

With Miscanthus as perennial energy crop, this study considers only one possible biomass feedstock for polymer production. Perennial energy crops have great potential to serve as a supplier of energy and carbon feedstock in the future.<sup>26</sup> However, the availability of perennial energy crops is still limited today. The actual potential varies greatly between studies<sup>26,27</sup> since it depends on many factors such as the availability and type of marginal land used for cultivation. Therefore, large-scale implementation of bio-based production also consider other lignocellulosic biomass. Consequently, we discuss the potential use of other lignocellulosic biomass for the considered processes.

For gasification, various lignocellulosic biomass feedstocks are suitable.<sup>28</sup> The type of lignocellulosic biomass influences the characteristics of the gasification process, such as the operating conditions and the gasifying agent.<sup>29</sup> The syngas yield and quality depend on moisture content, particle size, and particle density of the biomass feedstock.<sup>29</sup> Furthermore, the heating value of the biomass feedstock ranges between 18 and 22 MJ/kg for most lignocellulosic biomass and has a significant impact on the syngas yield and process efficiency.<sup>28</sup>

For fermentation of lignocellulosic biomass to ethanol, various feedstocks can be used as well. Here, the biomass composition, which consists of cellulose, hemicellulose, and lignin, has a significant impact on the ethanol yield.<sup>30</sup> The higher the lignin content of the biomass, the lower the ethanol yield. Since the share of lignin is particularly high for lignocellulosic biomass, the conversion process requires efficient pretreatment processes to degrade the crystallinity of cellulose fibers and remove lignin from biomass.<sup>30</sup> However, the use of other lignocellulosic biomass feedstocks leads to product yields similar to those obtained with the technologies employed in this study.<sup>31</sup>

Thus, alternative lignocellulosic biomass could be employed. However, the choice of biomass feedstock determines the overall process design of the gasification and fermentation and thus, influences the environmental impacts of bio-based products. Furthermore, other lignocellulosic biomass feedstocks have to be analyzed comprehensively in terms of harvesting effort and LUC emissions.

#### Savings of renewable resources from the combined utilization of biomass and CO<sub>2</sub>

Synergies from combined utilization save renewable resources compared to the utilization of either biomass or CO<sub>2</sub>. In the paper, we analyze the GHG reduction from 7.6 kg<sub>CO2-eq</sub>/kg<sub>PUR</sub> to 4.5 kg<sub>CO2-eq</sub>/kg<sub>PUR</sub> for the carbon footprint of -1.7 kg<sub>CO2-eq</sub> per kg biomass and 3 g<sub>CO2-eq</sub> per MJ renewable electricity. The reduction requires 2 kg of biomass and 45 MJ of renewable electricity used in separate production facilities (linear combination in Figure S1). In combined utilization, the same GHG reduction is achieved using only 1.6 kg of biomass and 33 MJ of renewable electricity.



Figure S1a: Renewable electricity consumption for a linear combination of bio- and CCU-based production and combined utilization as a function of the share of the bio-based production for a global warming impact of 4.5  $kg_{CO2-eq}/kg_{PUR}$ .

Figure S1b: Savings of renewable electricity (left y-axis) and biomass (right y-axis) as a function of the share of bio-based production for a global warming impact of 4.5  $kg_{CO2-eq}/kg_{PUR}$ . The savings equal the difference between the linear combination of bio- and CCU-based production and the combined utilization.

#### 3 Sensitivity analysis for the carbon footprint of renewable feedstocks

Synergies from combined utilization of biomass and  $CO_2$  can reduce GHG emissions compared to the utilization of either biomass or  $CO_2$ . However, the extent of additional savings depends on the carbon footprints of biomass and electricity (Figure S2). We, therefore, vary the carbon footprint of biomass and electricity in a sensitivity analysis. Our results indicate that for high carbon footprints of either biomass or electricity, the respective other technology is selected.



Figure S2: Relative savings in GHG emissions of the combined utilization of biomass and  $CO_2$  compared to individual utilization as a function of the carbon footprint of biomass and  $CO_2$ . The relative savings are expressed as the difference between the minimum GHG emissions of the individual utilization and the combined utilization of biomass and  $CO_2$  divided by the minimum GHG emissions of the individual utilization.

# References

- 1 Ecoinvent Association, *Ecoinvent, Version 3.5 (Ecoinvent, Zürich)*, available at: www.ecoinvent.org/, accessed 10/2020.
- 2 N. von der Assen, L. J. Müller, A. Steingrube, P. Voll and A. Bardow, *Environmental science & technology*, 2016, **50**, 1093–1101.
- 3 A. Sternberg and A. Bardow, *Energy Environ. Sci.*, 2015, **8**, 389–400.
- 4 CO2RRECT, CO2-Reaction using Regenerative Energies and Catalytic Technologies. Final project report (in German), 2014.
- 5 *Process Economics Program (PEP) Yearbook*, available at: http://www.ihs.com/products/chemical/technology/pep/.
- 6 L. J. Müller, A. Kätelhön, M. Bachmann, A. Zimmermann, A. Sternberg and A. Bardow, *Front. Energy Res.*, 2020, 8, 15.
- U.S. Department of Energy, *Fuel Cell Technologies Program Multi-Year Research*, *Development, and Demonstration Plan*, available at: https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-productionelectrolysis#central, accessed 14 November 2019.
- 8 B. Müller, K. Müller, D. Teichmann and W. Arlt, *Chemie Ingenieur Technik*, 2011, 83, 2002–2013.
- 9 L. K. Rihko-Struckmann, A. Peschel, R. Hanke-Rauschenbach and K. Sundmacher, *Ind. Eng. Chem. Res.*, 2010, **49**, 11073–11078.
- 10 D. Styles and M. B. Jones, *Energy Policy*, 2008, 36, 97–107.
- A. A. Rentizelas, A. J. Tolis and I. P. Tatsiopoulos, *Renewable and Sustainable Energy Reviews*, 2009, **13**, 887–894.
- 12 N. von der Assen, A. Sternberg, A. Kätelhön and A. Bardow, *Faraday discussions*, 2015, 183, 291–307.

- 13 Covestro Deutschland AG, *Cardyon brigher use of CO2*. fact sheet, available at: https://solutions.covestro.com/de/marken/cardyon, accessed 06/2020.
- 14 M. Ionescu, *Chemistry and technology of polyols for polyurethanes*, Smithers Rapra,2nd edn., 2016.
- 15 H. Wang, J. Hodgson, T. B. Shrestha, P. S. Thapa, D. Moore, X. Wu, M. Ikenberry, D. L. Troyer, D. Wang, K. L. Hohn and S. H. Bossmann, *Beilstein journal of nanotechnology*, 2014, 5, 760–769.
- 16 A. Kätelhön, R. Meys, S. Deutz, S. Suh and A. Bardow, *Proceedings of the National Academy of Sciences of the United States of America*, 2019, **116**, 11187–11194.
- 17 DECHEMA, *Low carbon energy and feedstock for the European chemical industry*, Frankfurt, 2017.
- 18 J. C. M. Farla, C. A. Hendriks and K. Blok, *Climatic Change*, 1995, 29, 439–461.
- 19 a) I. Hannula and E. Kurkela, *Bioresource Technology*, 2010, **101**, 4608–4615; b) I.
  Hannula and E. Kurkela, *Biomass and Bioenergy*, 2012, **38**, 58–67;
- 20 J. Isaksson, K. Pettersson, M. Mahmoudkhani, A. Åsblad and T. Berntsson, *Energy*, 2012,
  44, 420–428.
- 21 M. Arvidsson, M. Morandin and S. Harvey, *Energy Fuels*, 2014, 28, 4075–4087.
- 22 P. Spath, A. Aden, T. Eggeman, M. Ringer, B. Wallace and J. Jechura, *Biomass to Hydrogen Production Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-Heated Gasifier*. Technical Report, 2005.
- 23 M. Arvidsson, S. Heyne, M. Morandin and S. Harvey, Chem. Eng, 2012, 29, 331-336.
- 24 D. Humbird, R. Davis, L. Tao, C. Kinchin, D. Hsu, A. Aden, P. Schoen, J. Lukas, B.
  Olthof, M. Worley, D. Sexton and D. Dudgeon, *Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover*, 2011.

- 25 ECN, *ECN Phyllis classification*. miscanthus, available at: https://phyllis.nl/Biomass/View/568, accessed 07/2020.
- 26 I. Kluts, B. Wicke, R. Leemans and A. Faaij, *Renewable and Sustainable Energy Reviews*, 2017, **69**, 719–734.
- 27 H. Blanco-Canqui, Soil Science Society of America Journal, 2016, 80, 845–858.
- 28 Z. A. B. Z. Alauddin, P. Lahijani, M. Mohammadi and A. R. Mohamed, *Renewable and Sustainable Energy Reviews*, 2010, 14, 2852–2862.
- 29 V. S. Sikarwar, M. Zhao, P. Clough, J. Yao, X. Zhong, M. Z. Memon, N. Shah, E. J. Anthony and P. S. Fennell, *Energy Environ. Sci.*, 2016, 9, 2939–2977.
- 30 K. Robak and M. Balcerek, *Microbiological Research*, 2020, **240**, 126534, http://www.sciencedirect.com/science/article/pii/S094450132030402X.
- 31 A. Singh, D. Pant, N. E. Korres, A.-S. Nizami, S. Prasad and J. D. Murphy, *Bioresource Technology*, 2010, **101**, 5003–5012.