Supporting Information

Figure S1 – Thermodynamically predicted equilibrium composition of the CO₂-ODH total system as a function of temperature and H₂ co-feeding, at a feed composition of CO₂ : C₂H₆ of 1 and 1 bar pressure.

Gibbs free energy (ΔG) of total system as a function of temperature and pressure, with n_i , the molar concentration and μ_i , the chemical potential of species i.

$$\Delta G^{system}_{T,P} = \sum n_i \mu_i$$
S-Eq.1

with

$$\mu_{i}^{T,P} = \Delta G_{T}^{f} + RT ln \frac{\frac{n_{i}}{\sum n}P}{100 \mu P_{T}}$$

$$\Delta G_{T}^{f} = T \left(\frac{\Delta G_{2}g_{8K}^{f}}{T_{0}} - \left[\left(-aT_{0} - \frac{1}{2}bT_{0}^{2} + \frac{c}{T_{0}} - \frac{1}{3}dT_{0}^{3} + \Delta H_{2}g_{8K}^{f} \right) \left(\frac{1}{T_{0}} - \frac{1}{T} \right) + a(lnT - lnT_{0}) + \frac{1}{2}b(T - T_{0}) + \frac{1}{2}c\left(\frac{1}{T^{2}} - \frac{1}{T_{0}^{2}} \right) + \frac{1}{6}d(T^{2} - T_{0}^{2}) \right] \right)$$
S-Eq. 3
Thermodynamic properties from Knacke et al.¹ and Barin².

The conversion of the reactant (i) is defined as follows:

$$X_{reactant i}(\%) = \left(\frac{[i]_{inlet} - [i]_{outlet}}{[i]_{inlet}}\right) \cdot 100\%$$
 S-Eq. 4

The selectivity of a carbonaceous product i is defined as the concentration of product i corrected to the number of carbons in the product, devided by the sum of all products corrected to the number of carbons in each product:

$$S_{carbon\ product\ i}(C - \%) = \left(\frac{n_C^i \cdot [i]}{\sum_{i=1}^{n_c^i \cdot [i]}}\right) \cdot 100\%$$
 S-Eq. 5

Ethylene yield is defined as the concentration of ethylene devided by the inlet concentration of ethane:

$$Y_{C_2H_4}(\%) = \left(\frac{[C_2H_4]}{[C_2H_{6}^{inlet}]}\right) \cdot 100\%$$
 S-Eq. 6

	Mo ₂ C/SiO ₂ -WI
	Mo ₂ C/SiO ₂ -HNC
	Mo ₂ C/SiO ₂ -SG
	β-Mo ₂ C
all the second	η-ΜοC _{0.59}
	MoO _x C _y
- lln	Mo ₂ C/ZrO ₂ -WI
	ZrO ₂
- lu lu	Mo ₂ C/TiO ₂ -WI
	TiO ₂
man 1	Mo ₂ C/Al ₂ O ₃ -WI
and a second second	γ-Al ₂ O ₃
	Mo ₂ C/CeO ₂ -WI
	CeO ₂
- Milling and	Mo ₂ C/Ga ₂ O ₃ -WI
al dubat a second second	Ga ₂ O ₃
0.2 0.4 0.6 1/d (1/Å)	0.8

Figure 2. XRD profiles of freshly carburized catalysts (in black) and their corresponding reference patterns (in red)

Table S1. Overview of chemical and physical properties of fresh catalysts determined using BET and ICP-OES analysis.

Sample Name	Mo content	BET	Pore volume	Pore width	
	(wt%)	(m²/g)	(cm³/g)	(Å)	
Mo ₂ C/SiO ₂ -Wl ³	18	123	0.95	335	
Mo ₂ C/SiO ₂ -SG ³	18	176	0.86	174	
Mo ₂ C/SiO ₂ -HNC	15	119	0.79	272	
Mo ₂ C/ZrO ₂ -WI	20	8	0.03	181	
Mo ₂ C/TiO ₂ -WI	21	19	0.12	301	
Mo ₂ C/Al ₂ O ₃ -WI	17	84	0.54	255	
Mo ₂ C/CeO ₂ -WI	17	8	0.05	220	
Mo ₂ C/Ga ₂ O ₃ -WI	19	7	0.03	255	

Journal Name

Table S2. Raman bands observed in literature of their respective metal oxide materials.

					1	
	MoO ₃ -orthorhombic ⁴	ZrO ₂ -monoclinic	TiO₂-rutile ⁵	CeO ₂ ⁶	β -Ga ₂ O ₃ ⁷	
Raman bands	114 cm ⁻¹	117-189 cm ⁻¹ pair	134 cm ⁻¹	250 cm ⁻¹	201 cm ⁻¹	
	127 cm ⁻¹	222 cm ⁻¹	231 cm ⁻¹	464 cm ⁻¹	350 cm ⁻¹	
	158 cm ⁻¹	330 cm ⁻¹	438 cm ⁻¹	550 cm ⁻¹	417 cm ⁻¹	
	196 cm ⁻¹	376 cm ⁻¹	604 cm ⁻¹	595 cm ⁻¹	527 cm ⁻¹	
	218 cm ⁻¹	473 cm ⁻¹		830 cm ⁻¹	631 cm ⁻¹	
	245 cm ⁻¹	633 cm ⁻¹		860 cm ⁻¹	653 cm ⁻¹	
	283 cm ⁻¹			950 cm ⁻¹	767 cm ⁻¹	
	292 cm ⁻¹			1170 cm ⁻¹		
	335 cm ⁻¹					
	364 cm ⁻¹					
	379 cm ⁻¹					
	665 cm ⁻¹					
	817 cm ⁻¹					
	995 cm ⁻¹					

Figure S3. SEM-EDS images and elemental mapping of Mo₂C supported on various metal oxide supports via wet impregnation.

Figure S4. CO₂ conversion, ethylene yield and conversion ratio of Mo₂C/SiO₂-WI, Mo₂C/SiO₂-SG and Mo₂C/SiO₂-HNC. Conditions: T = 873 K, P = 1 bar, SV = 15 L/h·g_{cat}⁻¹, CO₂ : C₂H₆ = 1.

Figure S5. C_2H_6 conversion, C_2H_4 selectivity and CO selectivity of pure metal oxides, ZrO_2 , TiO_2 , Ga_2O_3 and SiO_2 . Conditions: temperature = 873 K, pressure = 1 bar, space velocity = 15 L/hrg_{cat}^{-1} , $CO_2 : C_2H_6$ ratio = 1.

Figure S6. CO_2 conversion and ethylene yield of bulk support materials. Conditions: T = 873 K, P = 1 bar, SV = 15 L/h·g_{cat}⁻¹, CO₂ : C₂H₆ = 1.

Journal Name

Figure S7. CO₂ conversion, ethylene yield and conversion ratio of Mo₂C/MOx-WI on various metal oxide support materials. Conditions: T = 873 K, P = 1 bar, SV = 15 L/h·g_{cat}⁻¹, CO₂ : $C_2H_6 = 1$.

Figure S8. XRD profiles of spent CO₂-ODH (left) and CO₂/H₂-ODH (right) catalysts (in black) and their corresponding reference patterns (in red).

Figure S9. XRD profiles of spent CO_2 -ODH bulk metal oxide support materials.

Table S3. Overview of phase quantification and crystallite size determined via Rietveld refinement of spent catalysts, with and without H₂ co-feeding. Bracketed values for SiO₂ supported samples are normalized to total Mo content obtained by ICP-OES. Mo₂C/SiO₂-WI and Mo₂C/SiO₂-SG are adapted from Marquart et al.³.

Sample Name	Support		β-Mo₂C		η-MoC _{0.59}		MoO _x C _y		MoO2		MoO ₃		Ce ₂ (MoO ₄) ₃ / Zr(MoO ₄) ₂	
	wt%	nm	wt%	nm	wt%	nm	wt%	nm	wt%	nm	wt%	nm	wt%	nm
Spent catalysts – CO ₂ ODH														
Mo ₂ C/SiO ₂ -WI	-	-	-	-	29.3 ± 0.9 (Norm. 5.6)	6.5 ± 0.4	-	-	70.2 ± 1.2 (Norm. 13.5)	30.5 ± 0.9	0.5 ± 1.1 (Norm. 0.1)	57.9 ± 25.6		
Mo ₂ C/SiO ₂ -SG	-	-	-	-	-	-	33.8 ± 2.1 (Norm. 6.5)	6.6 ± 0.8	66.2 ± 2.1 (Norm. 12.7)	49.7 ± 3.0	-	-	-	-
Mo ₂ C/SiO ₂ -HNC	-	-	-	-	50.1 ± 0.7 (Norm. 7.8)	4.9 ± 0.2	-	-	49.9 ± 0.7 (Norm. 7.8)	22.3 ± 0.8	-	-	-	-
Mo ₂ C/ZrO ₂ -WI	79.6 ± 0.3	75.3 ± 1.0	-	-	-	-	-	-	18.9 ± 0.2	46.4 ± 1.4	-	-	1.5 ± 0.2	59.8 ± 14.7
Mo ₂ C/TiO ₂ -WI	89.2 ± 0.2	39.2 ± 0.5	-	-	-	-	-	-	10.8 ± 0.2	31.9 ± 1.4	-	-	-	-
Mo ₂ C/Al ₂ O ₃ -WI	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mo ₂ C/CeO ₂ -WI	47.2 ± 0.4	113.1 ± 2.5	-	-	-	-	-	-	-	-	-	-	52.8 ± 0.4	94.3 ± 3.7
Mo ₂ C/Ga ₂ O ₃ -WI	85.5 ± 0.5	29.6 ± 0.3	2.0 ± 0.2	15.9 ± 2.2	7.2 ± 0.4	3.6 ± 0.3	-	-	5.3 ± 0.2	28 ± 1.8	-	-	-	-
						Spent cata	lysts – H ₂ /CO ₂ O	DH						
Mo ₂ C/SiO ₂ -WI-0H ₂	-	-	-	-	37.7 ± 0.8 (Norm. 7.3)	5.7 ± 0.3	-	-	62.3 ± 0.8 (Norm. 12.0)	34.0 ± 1.1	-	-	-	-
Mo ₂ C/SiO ₂ -WI-5H ₂	-	-	40.8 ± 1.7 (Norm. 7.9)	6.2 ± 0.4	52.3 ± 1.7 (Norm. 10.1)	3.6 ± 0.2	-	-	6.9 ± 0.6 (Norm. 1.3)	46.0 ± 8.3	-	-	-	-
Mo ₂ C/SiO ₂ -WI-17H ₂	-	-	53.9 ± 2.0 (Norm. 10.4)	4.6 ± 0.3	46.1 ± 2.0 (Norm. 8.9)	6.1 ± 0.4	-	-	-	-	-	-	-	-
Mo ₂ C/ZrO ₂ -WI-0H ₂	76.1 ± 0.3	74.3 ± 1.0							12.0 ± 0.2	48.8 ± 2.1	-	-	11.9 ± 0.2	48.9 ± 2.1
Mo ₂ C/ZrO ₂ -WI-5H ₂	79.9 ± 0.4	69.6 ± 0.9	17.5 ± 0.4	5.3 ± 0.2	-	-	-	-	2.6 ± 0.1	88.9 ± 12.9	-	-	-	-
Mo ₂ C/ZrO ₂ -WI-17H ₂	79.8 ± 0.4	66.9 ± 0.9	20.2 ± 0.4	4.3 ± 0.2	-	-	-	-	-	-	-	-	-	-

Figure S10. Raman spectra collected of spent CO₂-ODH supported Mo₂C catalysts.

Figure S12. Raman spectra collected of spent CO₂-ODH bulk metal oxide support materials.

- 1. O. Knacke, O. Kubaschewski and K. Hesselmann, *Thermochemical properties of inorganic substances*, Springer-Verlag, Berlin, 2nd edn., 1991.
- 2. I. Barin, Thermochemical Data of Pure Substances, VCH Publishers, Inc., Weinheim, 3rd edn., 1995.
- 3. W. Marquart, S. Raseale, G. Prieto, A. Zimina, B. B. Sarma, J.-D. Grunwaldt, M. Claeys and N. Fischer, *Manuscript submitted for publication*, 2020.
- 4. T. Mo, J. Xu, Y. Yang and Y. Li, *Catal. Today*, 2016, **261**, 101-115.
- M. Lubas, J. J. Jasinski, M. Sitarz, L. Kurpaska, P. Podsiad and J. Jasinski, Spectrochim Acta A Mol Biomol Spectrosc, 2014, 133, 867-871.
- 6. C. Schilling, A. Hofmann, C. Hess and M. V. Ganduglia-Pirovano, *The Journal of Physical Chemistry C*, 2017, **121**, 20834-20849.
- 7. S. Kumar and R. Singh, *physica status solidi* (*RRL*) *Rapid Research Letters*, 2013, **7**, 781-792.