Integration of the aprotic CO_2 reduction to oxalate at a Pb catalyst into a GDE flow cell configuration

Maximilian König^{a,b}, Shih-Hsuan Lin^b, Jan Vaes^{b,c}, Deepak Pant^{b,c*}, and Elias Klemm^a

current densities <i>i</i> / mA·cm ⁻²	Faradaic Efficiency $FE(C_2O_4^{2-}) / \%$
51	40
10 ¹	60
201	80
401	85
60 ¹	90
80 ¹	90
6 ²	61
11 ³	89
35 ³ *	97
134	31
204	62
20 ⁵	45
10 ⁶	59
157	74
0,28	72
18 ⁹	90
10 ¹⁰	86

Supporting Information

* at -5 °C

^{a.} Institute of Chemical Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

^{b.} Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium.

^c Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), 9000 Ghent, Belgium

SI 2: Scanning electron microscope images of the cross section of the prepared Pb GDE. Left: Profile of catalyst layer (top) and gas diffusion layer (bottom) Right: Magnification of catalyst layer. Images were recorded with a backscattered electron detector.

SI 3: Ferrocene calibration of Ag/AgNO₃ reference electrode at Pt working electrode. CV was recorded employing two Pt electrodes with the Ag/AgNO₃ reference electrode described in the main text. The CV was recorded at a scan rate of 10 mV·s⁻¹ in a 0.1M tetraethylammonium tetrafluoroborate, 0.02 M ferrocene solution in N₂-purged acetonitrile.

SI 4: Cell Voltages U in V plotted over the reaction time t in min for galvanostatic experiments at current densities between 10-40 mA·cm⁻² recorded in a two-electrode single chamber flow cell employing a Pb working electrode and a Zinc sacrificial anode. For the exact experimental conditions, see main text.

SI 5: Left: Cell Voltages *U* in V plotted over the reaction time *t* in min for galvanostatic experiments at current densities between 20-80 mA·cm⁻² recorded in a two-electrode single chamber flow cell employing a Pb GDE and a Zinc sacrificial anode. For the exact experimental conditions, see main text. Right: Current density program *j* in mA·cm⁻² employed during the 30 min. In the first 5 min of the experiment, the current density was increased in constant 20 mA·cm⁻² steps up to the desired current density.

SI 6: XRD powder diffraction pattern recorded of the solid products formed during the electrochemical reduction of CO_2 to oxalate in the flow cell at a Pb plate. The pattern was recorded using an Empyrean system and employing a Co-tube at 40 mA and 45 kV. A Bragg Brentano HD incident beam module was used with a PIXcel detector, recording the pattern at a scan speed of 0.067335°·s⁻¹.

References

- J. Fischer, T. Lehmann and E. Heitz, J. Appl. Electrochem., 1981, **11**, 743–750.
- 2 V. U. Kaiser and E. Heitz, Berichte der Bunsen-Gesellschaft, 1973, 77, 818–823.
- 3 W. Lv, R. Zhang, P. Gao, C. Gong and L. Lei, *J. Solid State Electrochem.*, 2013, **17**, 2789–2794.
- 4 W. Lv, R. Zhang, P. Gao, C. Gong and L. Lei, *Adv. Mater. Res.*, 2013, 809, 1322–1325.
- 5 Y. Oh, H. Vrubel, S. Guidoux and X. Hu, *Chem. Commun.*, 2014, **50**, 3878.
- 6 A. R. Paris and A. B. Bocarsly, *ACS Catal.*, 2019, **9**, 2324–2333.
- 7 S. Subramanian, K. R. Athira, M. Anbu Kulandainathan, S. Senthil Kumar and R. C. Barik, *J. CO2 Util.*, 2020, **36**, 105–115.
- 8 L. Sun, G. K. Ramesha, P. V. Kamat and J. F. Brennecke, *Langmuir*, 2014, **30**, 6302–6308.
- 9 D. A. Tyssee, J. H. Wagenknecht, M. M. Baizer and J. L. Chruma, *Tetrahedron Lett.*, 1972, 47, 4809–4812.
- 10 Y. Yang, H. Gao, J. Feng, S. Zeng, L. Liu, L. Liu, B. Ren, T. Li, S. Zhang and X. Zhang, *ChemSusChem*, , DOI:10.1002/cssc.202001194.