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Figure S1. Schematic diagram for synthesis of Arg-CS and Lys-CS. FTIR spectra of 

Arginine, Lysine, Arginine-Chitosan, Lysine-Chitosan, and chitosan. 
 

Figure S1 exhibits the characteristic FTIR spectra of CS and the arginine (Arg) or 
lysine (Lys) functionalized CS conjugate. The peak at 1647 cm-1 (amid I) and 1600 
cm-1 (amid Ⅱ) in CS all shift to 1630 cm-1 in Arg or Lys functionalized CS, which 
could be ascribed to the characteristic carbonyl stretching (C=O) owing to the 
formation of amide bonding1. The new peak in Arg or Lys functionalized CS appears 
at 1520 cm-1 could be attributed to the bending vibration and stretching vibration of 
secondary amide. Furthermore, the peak between 3300 and 3450 cm-1 can be 
attributed to the vibration of hydroxyl, amino and amide groups in CS2. 
Intermolecular and intramolecular hydrogen bonding between these groups in CS 



greatly limits its solubility. However, the peak becomes much narrower and weaker in 
Arg or Lys functionalized CS, which suggested that their conjugation to CS destroys 
the hydrogen bonds in CS then increases its solubility3. All these results indicates the 
linkage of Arg or Lys to CS. 
 

 
Figure S2. Sample images of Arg-CS-CA NPs (a) and Lys-CS-CA NPs (b) under 
different pH values. 

 



Figure S3. Size distribution of Arg-CS-CA NPs (a, b) and Lys-CS-CA NPs (c, d) at 
pH 2 and 3, respectively. 

 
Figure S4. Interaction between Arg-CS-CA (a) and Lys-CS-CA (b) NPs and mucin at 

pH 5. 

 
Figure S5. Sample images of curcumin entrapped in Arg-CS-CA NPs (a) and 

Lys-CS-CA NPs (b) under different pH values (containing 25% ethanol). 



 
Figure S6. Fluorescence spectra of casein due to casein-EWDP (a)/curcumin (b) 

interaction. 
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