Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Anti-proliferative effects of diterpenoids from *Sagittaria trifolia L*. tubers on colon cancer cells by targeting NF-κB

pathway

Israa Assani^a, Ying Du^a, Chun-Gu Wang^a, Lei Chen^a, Pei-Lei Hou^a, Shi-Feng Zhao^a, Yan Feng^a, Ling-Fei Liu^a, Bo Sun^a, Yan Li^a, Zhi-Xin Liao^{a*} and Ri-Zhen Huang^{b*}

^aDepartment of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for

Biomedical Research, Southeast University, Nanjing 211189, China

^bCollege of Biotechnology, Guilin Medical University, Guilin 541100.

*Corresponding authors at ^aDepartment of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. ^bCollege of Biotechnology, Guilin Medical University, Guilin 541100.

E-mail addresses: zxliao@seu.edu.cn (Z. -X. Liao) and <u>rzhuang1783@163.com</u> (R.-Z. Huang).

List of supporting information

EXPERIMENTAL SECTION

Figure S1.1 ¹H NMR spectrum (400 MHz) of 1 in CDCl₃

Figure S1.2¹³C NMR spectrum (100 MHz) of 1 in CDCl₃

Figure S1.3 HMBC spectrum of 1 in CDCl₃

Figure S1.4 HMQC spectrum of 1 in CDCl₃

Figure S1.5 ROESY spectrum of 1 in CDCl₃

Figure S1.6 ¹H-¹H COSY spectrum of 1 in CDCl₃

Figure S1.7 HRESIMS spectrum of 1

Figure S2.1 ¹H NMR spectrum (400 MHz) of 2 in CDCl₃

Figure S2.2 ¹³C NMR spectrum (100 MHz) of 2 in CDCl₃

Figure S3.1 ¹H NMR spectrum (400 MHz) of 3 in CDCl₃

Figure S3.2 ¹³C NMR spectrum (100 MHz) of 3 in CDCl₃

Figure S4.1 ¹H NMR spectrum (400 MHz) of 4 in CDCl₃

Figure S4.2¹³C NMR spectrum (100 MHz) of 4 in CDCl₃

Figure S5.1 ¹H NMR spectrum (400 MHz) of 5 in CDCl₃ Figure S5.2 ¹³C NMR spectrum (100 MHz) of 5 in CDCl₃ Figure S6.1 ¹H NMR spectrum (400 MHz) of 6 in CDCl₃ Figure S6.2 ¹³C NMR spectrum (100 MHz) of 6 in CDCl₃ Figure S7.1 ¹H NMR spectrum (400 MHz) of 7 in CDCl₃ Figure S7.2 ¹³C NMR spectrum (100 MHz) of 7 in CDCl₃ Figure S8.1 ¹H NMR spectrum (400 MHz) of 8 in CDCl₃ Figure S8.2 ¹³C NMR spectrum (100 MHz) of 8 in CDCl₃ Figure S9.1 ¹H NMR spectrum (400 MHz) of 9 in CDCl₃ Figure S9.2 ¹³C NMR spectrum (100 MHz) of 9 in CDCl₃ Figure S10.1 ¹H NMR spectrum (400 MHz) of 10 in CDCl₃ Figure S10.2 ¹³C NMR spectrum (100 MHz) of 10 in CDCl₃ Figure S10.3 The purity of 10 investigated by HPLC Figure S11.1 ¹H NMR spectrum (400 MHz) of 11 in CDCl₃ Figure S11.2 ¹³C NMR spectrum (100 MHz) of 11 in CDCl₃ Figure S11.3 The purity of 11 investigated by HPLC

Figure S1.1 ¹H NMR spectrum (400 MHz) of 1 in CDCl₃

Figure S1.2 ¹³C NMR spectrum (100 MHz) of 1 in CDCl₃

Figure S1.4 HMQC spectrum of 1 in CDCl₃

Figure S1.6 ¹H-¹H COSY spectrum of 1 in CDCl₃

Figure S1.7 HRESIMS spectrum of 1

Figure S2.1 ¹H NMR spectrum (400 MHz) of 2 in CDCl₃

Figure S3.2 ¹³C NMR spectrum (100 MHz) of 3 in CDCl₃

Figure S4.1 ¹H NMR spectrum (400 MHz) of 4 in CDCl₃

Figure S4.2 ¹³C NMR spectrum (100 MHz) of 4 in CDCl₃

Figure S5.1 ¹H NMR spectrum (400 MHz) of 5 in CDCl₃

Figure S6.1 ¹H NMR spectrum (400 MHz) of 6 in CDCl₃

Figure S6.2 ¹³C NMR spectrum (100 MHz) of 6 in CDCl₃

Figure S8.2 ¹³C NMR spectrum (100 MHz) of 8 in CDCl₃

Figure S9.2 ¹³C NMR spectrum (100 MHz) of 9 in CDCl₃

Figure S10.3 The purity of 10 investigated by HPLC

30

Figure S11.1 ¹H NMR spectrum (400 MHz) of 11 in CDCl₃

Figure S11.2 ¹³C NMR spectrum (100 MHz) of 11 in CDCl₃

Figure S11.3 The purity of 11 investigated by HPLC

33