Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2020



*Figure S1. X-band EPR spectra of the semiquinone anion radicals of the quercetin and its studied glycosides (1 mM), at room temperature in water-methanol solution at different methanol content (indicated in volume %).* 



*Figure S2. X-band EPR spectra of the semiquinone anion radicals of the quercetin and its studied glycosides (1 mM), at room temperature in water-methanol, arranged as to emphasize linewidth and hyperfine coupling constants evolution as methanol concentration dependence.* 

**Table S1.** Hyperfine coupling constants  $(a_{Hn})$  of the three protons (see Figure 3 in main text)and linewidth (LW) for quercetin and its glycosides as function of methanol content. Thevalues are determined from the experimental spectra using WinSim software.

|                        |                |            | measured in Gauss |                 |                 |        |  |
|------------------------|----------------|------------|-------------------|-----------------|-----------------|--------|--|
| %MeOH<br>(in<br>water) | Sample<br>name | g<br>value | $a_{\rm H1}$      | a <sub>H2</sub> | a <sub>H3</sub> | LW     |  |
| 40                     |                | 2.0049     | 3.0776            | 0.7880          | 1.4992          | 0.3848 |  |
| 50                     |                | 2.0047     | 3.2040            | 0.8000          | 1.4328          | 0.3512 |  |
| 60                     | Ouercetin      | 2.0048     | 3.5120            | 0.7504          | 0.9800          | 0.2816 |  |
| 75                     | 2              | 2.0049     | 3.5280            | 0.7728          | 0.9408          | 0.2656 |  |
| 80                     |                | 2.0049     | 3.5216            | 0.7888          | 0.9672          | 0.3032 |  |
| 90                     |                | 2.0049     | 3.5144            | 0.7560          | 1.0656          | 0.5048 |  |
| 100                    |                | 2.0048     | 3.4344            | 0.7656          | 1.1320          | 0.7400 |  |
| 40                     |                | 2.0050     | 2.8848            | 1.1320          | 0.9576          | 0.3280 |  |
| 50                     |                | 2.0050     | 2.8672            | 1.1568          | 0.9728          | 0.3536 |  |
| 60                     | Hyperoside     | 2.0050     | 2.8624            | 1.1704          | 0.9736          | 0.3816 |  |
| 75                     | 11990100100    | 2.0050     | 2.8616            | 1.2208          | 0.9856          | 0.5496 |  |
| 80                     |                | 2.0048     | 2.8608            | 1.2560          | 0.9904          | 0.6800 |  |
| 90                     |                | 2.0049     | 2.7952            | 1.3104          | 1.1008          | 0.8112 |  |
| 100                    |                | 2.0049     | 2.6936            | 1.2632          | 0.8872          | 1.3656 |  |
| 40                     |                | 2.0050     | 2.8416            | 1.0720          | 1.1544          | 0.3032 |  |
| 50                     |                | 2.0050     | 2.8336            | 1.1040          | 1.1264          | 0.3112 |  |
| 60                     | Ouercitrin     | 2.0050     | 2.8168            | 1.1016          | 1.2192          | 0.4312 |  |
| 75                     | 2              | 2.0049     | 2.8136            | 1.1128          | 1.2160          | 0.4752 |  |
| 80                     |                | 2.0050     | 2.8040            | 1.0920          | 1.2544          | 0.5280 |  |
| 90                     |                | 2.0050     | 2.7880            | 1.0584          | 1.3560          | 0.6280 |  |
| 100                    |                | 2.0050     | 2.8160            | 1.1520          | 1.2880          | 1.0808 |  |
| 40                     |                | 2.0050     | 2.8984            | 1.0872          | 0.9408          | 0.3568 |  |
| 50                     |                | 2.0049     | 2.8936            | 1.1032          | 0.9400          | 0.3824 |  |
| 60                     | Rutin          | 2.0050     | 2.8840            | 1.1464          | 0.9464          | 0.4272 |  |
| 75                     |                | 2.0050     | 2.8984            | 1.1944          | 0.9344          | 0.4616 |  |
| 80                     |                | 2.0050     | 2.8752            | 1.1528          | 0.9384          | 0.4040 |  |
| 90                     |                | 2.0050     | 2.9096            | 1.1984          | 1.0008          | 0.8080 |  |
| 100                    |                | 2.0050     | 2.7464            | 1.2568          | 0.8088          | 1.2280 |  |
| 40                     |                | 2.0050     | 2.8928            | 0.9592          | 1.1408          | 0.2824 |  |
| 50                     |                | 2.0050     | 2.8848            | 0.9656          | 1.1792          | 0.3296 |  |
| 60                     | Isoquercitrin  | 2.0050     | 2.8616            | 0.9808          | 1.1992          | 0.4008 |  |
| 75                     | 1              | 2.0050     | 2.8624            | 0.9904          | 1.2352          | 0.4424 |  |
| 80                     |                | 2.0050     | 2.8072            | 1.0064          | 1.3248          | 0.5648 |  |
| 90                     |                | 2.0050     | 2.8416            | 0.9744          | 1.2288          | 1.0472 |  |
| 100                    |                | 2.0049     | 2.7616            | 0.8208          | 1.2656          | 1.3104 |  |

| Compound      | Torsion<br>angle* | a <sub>H1</sub> | a <sub>H2</sub> | a <sub>H3</sub> |
|---------------|-------------------|-----------------|-----------------|-----------------|
| Quercetin     | -                 | 4.188           | 0.738           | 0.927           |
| Isoquercitrin | -18.2             | 1.980           | 1.732           | 0.939           |
| Hyperoside    | 18.6              | 2.395           | 1.553           | 0.653           |
| Quercitrin    | -26.8             | 2.848           | 1.202           | 2.047           |
| Rutin         | -34               | 1.514           | 0.668           | 0.634           |
|               |                   |                 |                 |                 |

**Table S2.** Numerically computed parameters as described in main text. Hyperfine coupling constants  $(a_{Hn})$  in G.

\*as determined from the optimised structures shown in Figure 5 (main text).



**Figure S3.** *Left*: *Titration curves for quercetin, kaempferol and luteolin used for pKa determination. Right*: *Illustrative spectral changes of quercetin obtained in pH titration.* 



**Figure S4.** pKa determination using pH titration via molecular absorption spectrophotometry following their spectral profile change at the indicated wavelengths – full circles indicating the ratio of the absorbances in the right axis title and squares indicating the ratio of the absorbances in the left axis title. The pKa values were determined after applying a sigmodal function for fitting (fitting curves indicated in magenta).



Figure S5. Modelled structures of studied compounds, in completed deprotonated state presented in three perspectives.



**Figure S6.** *Lipophilicity determination from logk linear dependence on methanol content () in isocratic HPLC approach as described in the main text.* 



**Figure S7.** *Left-DPPH bleaching assay at different methanol concentrations. Right- ABTS bleaching assay of the studied compound.* 



**Figure S8.** *Kinetic profile of liposome peroxidation, measured at 234 nm, and their inhibition by the studied glycosides in a concentration-dependent manner.* 



**Figure S9.** Antioxidant capacity evaluation using inhibition liposomes peroxidation assay: lag time linear dependence on compounds concentration. Lag time values correspond to the inflection points in the kinetic profiles from Figure 8, main text.



**Figure S10.** Molecular absorption spectra recorded upon treatment of the investigated glycosides and quercetin with AlCl<sub>3</sub> as described in main text. Inset: Zoomed in for the spectral maxima.