Jiaogulan tea (Gpostemma pentaphyllum) potentiates the antidiabetic effect of white tea via AMPK and PI3K pathway in C57BL/6 mice

Xiaoyan Xia^a, Jing Xu^a, Xude Wang^a, Hua Wang^a, Zhenchuan Lin^b, Keping Shao^b, LinLin Fang^{c,*}, Chenning Zhang^{d,*}, and Yuqing Zhao^{a, e,*}

^a School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China

^b Pinpin Tea Industry Co., Ltd., Fujian, 355200, China

^c College of Pharmacy, Dalian Medical University, Dalian, 116044, Liaoning Province, China

^d Taihe hospital, Hubei University of Medicine, Shiyan, 442000, China

^e Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China

* Corresponding authors:

Yuqing Zhao: Tel: +86 24 43520309, Fax: +86 24 435230300; E-mail: zyq4885@126.com Chenning Zhang: Tel: +86 0719 8876611; E-mail: ZhangCN1118@163.com Linlin Fang: Tel: +86 0411 86110417; E-mail: fanglinlin880616@163.com

Supplementary data

Chemical Analysis by UPLC-Q-Exactive MS

The chemical analysis of white tea and Jiaogulan was performed on an UPLC-Q-Exactive-MS system. The chromatographic analysis was carried out using an UltiMate 3000 UPLC system (Thermo Fisher Scientific, USA). The samples were separated on a Hypersil Gold C₁₈ column (Thermo, 100 × 2.1 mm, 1.9 µm) at a flow rate of 0.3 mL/min and the column temperature was maintained at 40 °C. A solution of mobile phase 5 % acetonitrile and 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) were employed. 10 µL of samples were injected into the system with automatic injector and separated employing a gradient elution (0-2.0 min: 0-20% B; 2.0-9.5 min:20-100% B; 9.5-15.5 min: 100-0% B; 15.5-15.6 min: 100-0% B; 15.6-18 min: 0% B). The automatic injector was set at 4 °C. The UPLC system was coupled to a Thermo Q-Exactive mass spectrometer (Thermo Fisher Scientific, USA). The mass spectrometry determination was operated in both positive (+) and negative (-) ionization modes. The optimal ESI source conditions were set as follows: source heater temperature (300 °C), sheath gas flow rate (45 arb), auxiliary gas flow rate (15 arb), sweep gas flow rate (1arb), capillary temperature (350 °C). The above parameters were the same in the two modes. The (S)-Lens RF Level was 30% in positive mode and 60% in negative mode. The spray voltage was set at 3.0 kV in ESI⁺ mode and 3.2 kV in ESI⁺ mode and 7.000 (in full scan MS¹) and 17,500 (data-dependent (dd) mass ranges in MS²), respectively. MS² experiments were performed by high-energy collision-induced dissociation (HCD) at collision energy of 15, 30 and 45 V.

Figure S1. The total ion chromatogram (TIC) of the white tea and Jiaogulan. (A) TIC of white tea; (B) TIC of Jiaogulan

Table S1. Identification and the relative contents of 5	2 compounds in white tea an	d Jiaogulan via UPLC Q-Exactive MS/MS
---	-----------------------------	---------------------------------------

NO	Dt (min)	Observed	Calculated	Error	Formula	lon		Relative Contents ^a	
NU.	Kt (min)	mass	mass	mass (ppm)		Mode	1015/1015	WT (%)	JGL (%)
					Phenolics				
1	0.93	153.0423	153.0426	-1.763-Hydroxyanthranilic acid	C ₇ H ₇ NO ₃	+	154.05	0.0105	ND
2	1.845	168.0411	168.0423	-7.14 2',4',6'-Trihydroxyacetophenone	$C_8H_8O_4$	-	61.99, 123.04, 167.03	ND	0.0241
3	2.153	154.0253	154.0266	-8.44 Protocatechuic acid	$C_7H_6O_4$	-	153.02	ND	0.0703
4	2.671	138.0314	138.0317	-1.963,4-Dihydroxybenzaldehyde	$C_7H_6O_3$	+	56.97, 116.97, 139.04	0.0860	0.0048
5	2.84	138.0303	138.0317	-10.14 Salicylic acid	$C_7H_6O_3$	-	93.03, 136.02, 137.02	ND	0.2234
6	2.881	354.0947	354.0951	-1.21 Chlorogenic Acid	$C_{16}H_{18}O_9$	+	163.04, 355.10	0.0104	ND
7	3.117	170.0203	170.0215	-7.06 Gallic acid	$C_7H_6O_5$	-	97.03, 125.02, 126.03, 169.02	0.0162	0.0035
8	3.122	180.0420	180.0423	-1.44 Caffeic Acid	$C_9H_8O_4$	+	135.04, 163.04, 181.07	0.0204	0.3779
9	3.134	164.0471	164.0473	-1.28 p-Coumaric acid	$C_9H_8O_3$	-/+	119.05, 121.03, 163.04	0.1214	0.2588
10	3.453	122.0367	122.0368	-0.66 4-Hydroxybenzaldehyde	$C_7H_6O_2$	+	79.02, 88.02, 123.04	0.2619	0.0273
11	3.624	448.1007	448.1006	0.22 Astragalin	$C_{21}H_{20}O_{11}$	-	227.03, 285.04, 301.03, 447.09	0.0183	0.3615
12	4.218	138.0303	138.0317	-10.14 4-Hydroxybenzoic acid	$C_7H_6O_3$	-	93.03, 94.04, 136.86, 137.02	ND	0.0498

					Flavonoids				
1	2.676	306.0733	306.0740	-2.29 (-)-Epigallocatechin	$C_{15}H_{14}O_7$	+	139.04, 163.04, 181.05	0.6725	0.0047
2	2.839	286.0471	286.0477	-2.10 Cyanidin	$C_{15}H_{11}CIO_6$	+	84.08, 149.02, 231.06, 259.06, 287.05	ND	0.0044
3	2.934	596.1746	596.1741	0.84 Eriocitrin	$C_{27}H_{32}O_{15}$	-	125.02, 137.02, 385.09, 595.17	ND	0.0144
4	3.068	290.0783	290.0790	-2.41 Epicatechin	$C_{15}H_{14}O_6$	+	123.04, 139.04, 165.05, 291.09	0.3482	0.0016
5	3.074	290.0791	290.0790	0.38 (±)-Catechin	$C_{15}H_{14}O_6$	-	109.03, 125.02, 289.07	0.0570	0.0620
6	3.092	458.0838	458.0849	-2.40 Epigallocatechin Gallate	$C_{22}H_{18}O_{11}$	+	83.01, 169.01, 457.08	4.6972	0.0073
7	3.201	318.0369	318.0376	-2.20 Myricetin	$C_{15}H_{10}O_8$	-	137.02, 151.00, 179.00,317.03	0.0926	0.0009
8	3.321	610.1522	610.1534	-1.92 Rutin	$C_{27}H_{30}O_{16}$	-	151.00, 255.03, 271.02, 609.16	0.1347	11.9193
9	3.426	464.0948	464.0955	-1.51 Isoquercitrin	$C_{21}H_{20}O_{12}$	-	125.02, 169.01, 271.03, 463.09	0.4158	0.9239
10	3.517	286.0471	286.0477	-2.10 Kaempferol	$C_{15}H_{10}O_{6}$	+	139.04, 153.02, 287.05	0.0592	0.0111
11	3.546	316.0578	316.0583	-1.58 Isorhamnetin	$C_{16}H_{12}O_7$	+	317.07	ND	0.0023
12	3.754	432.1047	432.1056	-2.04 Genistin	$C_{21}H_{20}O_{10}$	+	271.06125, 433.11450	0.0144	ND
13	3.904	274.0835	274.0841	-2.19 Phloretin	$C_{15}H_{14}O_5$	+	108.05, 169.05, 275.09	0.0013	0.0009
14	3.939	302.0420	302.0427	-2.32 Quercetin	$C_{15}H_{10}O_7$	-	153.02, 301.07	0.0231	0.0019
15	3.941	300.0628	300.0634	-2.00 Diosmetin	$C_{16}H_{12}O_{6}$	+	301.07	ND	0.0009
16	4.387	288.0626	288.0634	-2.85 Eriodictyol	$C_{15}H_{12}O_{6}$	-	135.04, 151.00, 287.06	0.0050	ND
17	4.406	286.0471	286.0477	-2.24 Luteolin	$C_{15}H_{10}O_{6}$	-/+	153.02, 285.04, 287.05	0.0251	0.1490
18	4.533	316.0578	316.0583	-1.58 Rhamnetin	$C_{16}H_{12}O_7$	+	317.07	ND	0.0010
19	4.877	270.0522	270.0528	-2.41 Apigenin	$C_{15}H_{10}O_5$	+	153.02, 271.06	0.0158	ND
20	4.895	272.0678	272.0685	-2.57 Naringenin	$C_{15}H_{12}O_5$	-	93.03, 151.00, 271.06	0.0122	ND
					Saponins				
1	5.127	620.4283	620.4288	-0.81 Ginsenoside Rh4	$C_{36}H_{60}O_8$	+	/	ND	0.0211
2	5.559	604.3967	604.3975	-1.32 Hederagenin 3-O-arabinoside	$C_{35}H_{56}O_8$	+	/	ND	0.0019
3	5.686	974.5082	974.5086	-0.41 Madecassoside	$C_{48}H_{78}O_{20}$	-	/	ND	1.2933
4	5.792	942.5195	942.5188	0.74 Soyasaponin I	$C_{48}H_{78}O_{18}$	-	/	ND	0.0054
5	5.804	884.4767	884.4770	-0.34 Gracillin	$C_{45}H_{72}O_{17}$	-	/	ND	1.2882
6	5.828	958.5131	958.5137	-0.63 Soyasaponin A3	$C_{48}H_{78}O_{19}$	-	/	ND	0.3122
7	5.898	944.4979	944.4981	-0.21 Araliasaponin II	$C_{47}H_{76}O_{19}$	-	/	ND	0.1126
8	6.021	978.5394	978.5399	-0.51 Ginsenoside I	$C_{48}H_{82}O_{20}$	-	/	ND	0.4637
9	6.112	940.5016	940.5032	-1.70 Dehydrosoyasaponin I	$C_{48}H_{76}O_{18}$	-	/	ND	0.2767
10	6.234	960.5290	960.5294	-0.42 Notoginsenoside G	$C_{48}H_{80}O_{19}$	-	/	ND	0.8716
11	6.428	796.4609	796.4609	0.00 Soyasaponin III	$C_{42}H_{68}O_{14}$	-	/	ND	0.1009
12	6.459	930.5189	930.5188	0.11 Hoduloside VII	$C_{47}H_{78}O_{18}$	-	/	ND	0.0498
13	6.774	868.4811	868.4820	-1.04 Dioscin	$C_{45}H_{72}O_{16}$	+/-	/	ND	0.0153
14	6.844	828.4875	828.4871	0.48 Vinaginsenoside R2	$C_{43}H_{72}O_{15}$	-	/	ND	0.1159
15	7.071	816.4874	816.4871	0.37 Majonoside R1	$C_{42}H_{72}O_{15}$	-	/	ND	0.0153
16	7.292	842.5024	842.5028	-0.47 Vinaginsenoside R1	$C_{44}H_{74}O_{15}$	-	/	ND	0.0162
17	7.619	800.4922	800.4922	0.00 Ginsenoside Rf	$C_{42}H_{72}O_{14}$	-	/	ND	0.3067
18	7.716	782.4815	782.4816	-0.13 Ginsenoside La	$C_{41}H_{68}O_{13}$	-	/	ND	0.0555
19	9.864	714.4196	714.4190	0.84 Cyclopassifloside VII	$C_{37}H_{62}O_{13}$	-	/	ND	0.0543

20	10.649	738.4229	738.4190	5.28 Polypodosaponin	$C_{39}H_{62}O_{13}$	-	/	ND	0.0239
^a The relative content of the target compounds was calculated by their area (%) in the total ion chromatography									

^a The relative content of the target compounds was calculated by their area (%) in the total ion chromatography. ND: not detected.