Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2020

Table S1 Summary of randomized control trials on ALA and cardiovascular risk factors compared with LA. Negative, no significant differences were found between ALA and LA groups; positive, ALA had different effects with LA.

References	Location	Subjects	Sample	Intervention	Design	Dosage	Duration	Results	
			size (ALA/LA)			g/d (ALA/LA)		negative	positive
[1, 2]	Australia	healthy young men	15/14	safflower oil linseed oil	parallel design providing food	10 ALA+12 LA / 1 ALA+21 LA	6 weeks	blood lipids, coagulation,	
[3]	Netherlands	moderately hypercholesterolaemic subjects with two other CVD risk factors	114/168	margarine with ALA or LA	parallel design freeliving	6.3 ALA+26.3 LA/ 1.0 ALA+ 26.8 LA	2 years	SBP, DBP, TC, LDL-c Von Willebrand factor	HDL-c, TG fibrinogen
[4]	Netherlands	moderately hypercholesterolaemic subjects with two other CVD risk factors	51/52	margarine with ALAor LA	parallel design freeliving	5.9 ALA+23.9 LA/ 1.1ALA+ 25.4LA	2 years	IL-6, IL-10, sICAM-1, IMT	CRP
[5]	Canada	healthy men and women	22/22	capsule	parallel design freeliving	1.02 ALA+0.28 LA/ 0.39 ALA+1.14 LA	12 weeks	blood lipids, CRP, TNF- α, platelet aggregation	
[6-8]	Greece	dyslipidaemic men	59/28	flaxseed oil safflower oil	parallel design freeliving	8 ALA+2 LA / 11 LA	12 weeks	SBP, blood lipids, sICAM-1, sE-selectin, sVCAM-1	DBP, MAP CRP, SAA, IL-6
[9]	Greece	dyslipidaemic men	18/17	flaxseed oil safflower oil	parallel design freeliving	8 ALA+2 LA / 11 LA	12 weeks	blood lipids, TNF-α, adiponectin	
[10]	Finland	healthy men and women	14/14	flaxseed oil hempseed oil	crossover design freeliving	13.3 ALA+3.3 LA / 5.5 ALA+ 13.5 LA	4 weeks	blood lipids, glucose, insulin, haemostatic factors	TC:HDL-c

[11]	America	hypercholesterolemic	23/23	flaxseed oil	crossover design	17 ALA+28 LA /	6 weeks	blood lipids, CRP, ICAM-	VCAM-1, E-
		subjects		walnut oil	providing diets	7 ALA+ 34 LA		1,	selectin
[12-14]	United	moderately	30/30/29	spread with	parallel design	4.5 ALA+ 16.2 LA /	6 months	blood lipids,	
	Kingdom	hyperlipidaemic men		ALA or LA	freeliving	9.5 ALA+ 13.1 LA /		immune function,	
		and women				1.5 ALA + 22.9 LA		blood coagulation,	
								fibrinolytic factors	
Present	China	moderately	81/85	blend oil	parallel design	1.9 ALA+9.4 LA /	1 year	blood lipids, glucose,	
study		hyperlipidaemic men		corn oil	freeliving	13.6 LA		insulin, CRP, IMT	
		and women							

ALA, alpha-linolenic acid; LA, linoleic acid; sICAM-1, soluble intercellular adhesion molecule-1; sVCAM-1, soluble vascular cell adhesion molecule-1; CRP, C-reactive protein; IL-6, interleukins 6; IL-10, interleukins 6; TNF-α, tumor necrosis factor-α; SAA, serum amyloid A; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; IMT, intima-media thickness.

- 1. Pang, D., et al., Replacement of linoleic acid with alpha-linolenic acid does not alter blood lipids in normolipidaemic men. Br J Nutr, 1998. 80(2): p. 163-7.
- 2. Allman-Farinelli, M.A., et al., *Comparison of the effects of two low fat diets with different alpha-linolenic:linoleic acid ratios on coagulation and fibrinolysis.* Atherosclerosis, 1999. **142**(1): p. 159-68.
- 3. Bemelmans, W.J., et al., *Effect of an increased intake of alpha-linolenic acid and group nutritional education on cardiovascular risk factors: the Mediterranean Alpha-linolenic Enriched Groningen Dietary Intervention (MARGARIN) study.* Am J Clin Nutr, 2002. **75**(2): p. 221-7.
- 4. Bemelmans, W.J., et al., *Increased alpha-linolenic acid intake lowers C-reactive protein, but has no effect on markers of atherosclerosis.* Eur J Clin Nutr, 2004. **58**(7): p. 1083-9.
- 5. Kaul, N., et al., *A comparison of fish oil, flaxseed oil and hempseed oil supplementation on selected parameters of cardiovascular health in healthy volunteers.* J Am Coll Nutr, 2008. **27**(1): p. 51-8.
- Rallidis, L.S., et al., *Dietary alpha-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients*. Atherosclerosis, 2003.
 167(2): p. 237-42.
- 7. Rallidis, L.S., et al., The effect of diet enriched with alpha-linolenic acid on soluble cellular adhesion molecules in dyslipidaemic patients. Atherosclerosis, 2004. 174(1):

p. 127-32.

- 8. Paschos, G.K., et al., Dietary supplementation with flaxseed oil lowers blood pressure in dyslipidaemic patients. Eur J Clin Nutr, 2007. 61(10): p. 1201-6.
- 9. Paschos, G.K., et al., *Effects of flaxseed oil supplementation on plasma adiponectin levels in dyslipidemic men.* Eur J Nutr, 2007. 46(6): p. 315-20.
- 10. Schwab, U.S., et al., *Effects of hempseed and flaxseed oils on the profile of serum lipids, serum total and lipoprotein lipid concentrations and haemostatic factors.* Eur J Nutr, 2006. **45**(8): p. 470-7.
- 11. Zhao, G., et al., *Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women*. J Nutr, 2004. **134**(11): p. 2991-7.
- 12. Finnegan, Y.E., et al., *Plant and marine derived (n-3) polyunsaturated fatty acids do not affect blood coagulation and fibrinolytic factors in moderately hyperlipidemic humans.* Journal of Nutrition, 2003. **133**(7): p. 2210-2213.
- Kew, S., et al., *Lack of effect of foods enriched with plant- or marine-derived n-3 fatty acids on human immune function*. American Journal of Clinical Nutrition, 2003.
 77(5): p. 1287-1295.
- 14. Finnegan, Y.E., et al., *Plant- and marine-derived n-3 polyunsaturated fatty acids have differential effects on fasting and postprandial blood lipid concentrations and on the susceptibility of LDL to oxidative modification in moderately hyperlipidemic subjects.* American Journal of Clinical Nutrition, 2003. **77**(4): p. 783-795.