Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2020

Figure S1. Fractionation scheme

Figure S2. Structure and NMR data of eckol

¹H NMR (DMSO- d_6 , 600 MHz) δ 9.48 (1H, s, OH-9), 9.42 (1H, s, OH-4), 9.15 (2H, s, OH-2,7), 9.12 (2H, s, OH-3', -5'), 6.14 (1H, s, H-3), 5.96 (1H, d, J = 2.7 Hz, H-8), 5.80 (1H, t, J = 1.9 Hz, H-4'), 5.79 (1H, d, J = 2.7 Hz, H-6), 5.72 (2H, d, J = 2.1 Hz, H-2', -6'); ¹³C NMR (150 MHz, DMSO- d_6) 123.1 (C-1), 145.9 (C-2), 98.1 (C-3), 141.8 (C-4), 122.2 (C-4a), 142.5 (5a), 93.7 (C-6), 152.9 (C-7), 98.4 (C-8), 146.0 (C-9), 122.6 (9a), 137.1 (10a), 160.3 (C-1'), 93.6 (C-2'6'), 158.7 (C-3'5'), 96.1 (C-4')

HPLC analysis of Eckol

Figure S5. ¹³C-NMR spectra of eckol

Figure S6. ¹H-NMR spectra of eckol

Figure S8. Proposed fragmentation pattern of the structures tentatively identified in EA fraction

Figure S9. (A) Extracted Ion Chromatograms (EIC) of EA fraction obtained by molecular features in Agilent Masshunter. [M-H]- (m/z): 1, 371; 2, 743; 3, 741; 4, 497; 5, 495; 6, 373; 7, 601; 8, 477. (B) Total ion chromatogram (TIC) and EIC of EA fraction. The x-axis represents retention time (min), and the y-axis represents signal intensity.

