Supplementary Data for

Amyloid β fibrils disruption by oleuropein aglycone: Long-time molecular dynamics simulation to gain insight into the mechanism of action of this polyphenol from extra virgin olive oil

Simone Brogi, *a Hajar Sirous, b Vincenzo Calderone*a and Giulia Chemic

^aDepartment of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.

^bBioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran.

^cWellcome Centre for Anti-Infectives Research, Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, DD1 5EH Dundee, United Kingdom.

*Corresponding authors: Simone Brogi E-mail: <u>simone.brogi@unipi.it</u> and Vincenzo Calderone E-mail: <u>vincenzo.calderone@unipi.it</u>.

Table of Contents	
Figure S1	page S2
Figure S2	page S3
Figure S3	page S4

Figure S1. Timeline representation of the interactions and contacts of Figure 6 in the main text (Hbonds, hydrophobic, ionic, water bridges). Some residues make more than one specific contact with the ligand, which is represented by a darker shade of orange, according to the scale to the right of the plot.

Figure S2. A β fibrils (green cartoon): progression of MD simulation through 5 μ s. The picture was generated by means of PyMOL.

Figure S3. RMSD calculation for each chain of $A\beta$ fibrils without OA.