Supplementary Materials

Fig. S1A Metabolites identified in Murcott dichloromethane (DCM) and ethyl acetate (ET) fractions using HPLC-PDA-ESI- MS in negative ion mode.

glc= Glucose; Rut. = Rutinosyl; Neoh. = Neohesperidosoyl; Caf. = Caffeoyl; HMG= 3- Hydroxy-3-methyl glutaryl; F= Feruloyl; Quin. = Quinoyl.

F	₹ ₅						
R4	R ₆						
\mathbf{R}_{2}	J						
		R2	R3	R4	R5	R6	Compound
$R_2 \qquad \qquad$	Н	(2``-O- Xylosyl) Glc.	ОН	Н	Н	ОН	Apigenin-6-C-glucosyl-2``-O-xyloside (33)
	Н	Н	ОН	(2``-O- Xylosyl) glc	Н	OH	Apigenin-8-C-glucosyl-2``-O-xyloside (35)
	Н	Н	OH	Н	OH	OMe	Diosmetin (75)
	Н	Н	O-Rut.	Н	OH	OMe	Diosmin (53)
	O-Rut.	Н	OH	Н	OH	OH	Rutin (62)
	OMe	Н	OMe	Н	Н	OMe	5-Hydroxy- 3,4', 7-trimethoxy flavone (70)
	O-HMG-glc	Н	OH	OMe	OH	OH	8-Methoxyquercetin-3-O-[6``-HMG]-glucoside (27)
	O- glc	Н	OH	OMe	OH	OH	8-Methoxyquercetin-3-O-glucoside (56)
	O- Rut.	Н	O-glc	Н	OH	OH	Quercetin-3-O-rutinosyl-7-O- glucoside (68)
	O-Rut.	Н	OH	Н	OMe	OH	Isorhamnetin-3-O-rutinoside (64)
	OMe	Н	OH	Н	OMe	OH	Quercetin dimethyl ether (74)
	OMe	OMe	OH	Н	OMe	OH	Jaceidin (73)
	осн _з						
	ОН						
HO		R1 R2	R	3 R4	R5	c	Compound
		gle OH	g	le OMe	OH	S	Stellarin-2 (30)
H ₃ CO	OR	gle OH	g	le OH	OMe	I	Lucenin-2 4'-methyl ether (31)
он В		glc OH	g	lc H	OH	1	Vicenin-2 (32)
		gle OH	Н	и он	OH	I	soorientin (34)
		н он	g	le OH	OH	0	Drientin (36)
		н он	g	le OMe	OH	S	Scoparin (37)
		н он	g	lc H	ОН	``	Vitexin (43)
		gle OH	н	н	он	I	sovitexin (44)
		н он	g	le OH	OMe	C	Drientin-4`-methyl ether (45)
		ole OH	н	OMe	OH	T	soscoparin (49)
		H O-Rut	н	ОН	ОН	T	uteolin-7-O-rutnoside (50)
		H O-glc	н	í OMe	ОН		Thrysoeriol-7-O-glucoside (63)
		de OH	11 11	ОН	OMa	т	soorientin 4` methyl ether (65)
			л т		ONIE	1	The received (72)
			п ь т		OI		utalin 7.0 mahammidasida
-	_	п U-Neo	n. H		ОН	1	Luconn-7-O-neonesperidoside
F	⊀2 I	н ОН	Н	ОН	ОН	1	Luteolin (89)
	R ₃						

Fig. S1B Metabolites identified in Murcott dichloromethane (DCM) and ethyl acetate (ET) fractions using HPLC-PDA-ESI- MS in negative ion mode.

glc= Glucose; Rut. = Rutinosyl; Neoh. = Neohesperidosoyl; Caf. = Caffeoyl; HMG= 3- Hydroxy-3-methyl glutaryl; F= Feruloyl; Quin. = Quinoyl.

Fig. S1C Metabolites identified in Murcott dichloromethane (DCM) and ethyl acetate (ET) fractions using HPLC-PDA-ESI- MS in negative ion mode.

glc= Glucose; Rut. = Rutinosyl; Neoh. = Neohesperidosoyl; Caf. = Caffeoyl; HMG= 3- Hydroxy-3-methyl glutaryl; F= Feruloyl; Quin. = Quinoyl.

Fig. S2 ¹H-NMR spectrum of compound C1 (Nobiletin)

Fig. S3 ¹³C-NMRspectrum of compound C1 (Nobiletin)

Fig. S4 ¹H-NMR spectrum of compound C2 (Isosinensetin)

Fig. S5 ¹³C-NMRspectrum of compound C2 (Isosinensetin)

Fig. S6 ¹H-NMR spectrum of compound C3 (Limonin)

Fig. S7 ¹³C-NMRspectrum of compound C3 (Limonin)

Fig. S8¹H-NMR spectrum of compound **C4** (4 - Demethylnobiletin)

Fig. S9 ¹³C-NMRspectrum of compound **C4** (4□-Demethylnobiletin)

Fig. S10 ¹H-NMR spectrum of compound **C5** (Stigmasterol-O-β-D-glucoside)

Fig. S11¹³C-NMR spectrum of compound C5 (Stigmasterol-O- β -D-glucoside)

Fig. S12 HSQC spectrum of compound C5 (Stigmasterol-O- β -D-glucoside)

Fig. S13 ¹H-NMR spectrum of compound C6 (Hesperidin)

Fig. S14 ¹³C-NMRspectrum of compound C6 (Hesperidin)

Fig. S16 MS-MS spectrum of ferulic acid (19)

Fig. S17 MS-MS spectrum of syringetin (18)

Fig. S18 MS-MS spectrum of chryseriol-7-O-glucoside (63)

Fig. S20 MS-MS spectrum of scoparin (37)

Fig. S22 MS-MS spectrum of isovitexin (44)

Fig. 23 MS-MS spectrum of lucenin-2 4'-methyl ether (31)

Fig. S24 MS-MS spectrum of hesperidin (54)

Fig. S25 MS-MS spectrum of neohesperidin (61)

Fig. S26 MS-MS spectrum of limocitrin-O-Glc. HMG (38)

Fig. S27 MS- MS spectrum of limocitrol-O-Glc. HMG (42)

Fig. S28: MS/MS fragmentation pathways of some selected compounds

Supplementary Texts: Characterization of the isolated compounds

Text S1: Identification of compound C1 (Nobiletin): white flakes (55 mg) with $R_f 0.5$ and 0.69 (S2 and S3, respectively). UV: λ_{max} (MeOH) nm: 248 (sh), 270 (sh), 333; (+NaOMe): 248 (sh), 270 (sh), 332; (+ AlCl₃): 245 (sh), 269 (sh), 331; (+ AlCl₃+ HCl): 247 (sh), 269 (sh), 332; (+ NaOAc): 248 (sh), 270 (sh), 332; (+ NaOAc+Boric acid): 248 (sh), 270 (sh), 332. EI-MS: *m/z* (relative abundance %): 402 (M⁺, 27), 387 (100), 371 (6.3), 359 (6.1), 344 (13), 182 (6.3), 162 (4.0), 153 (2.3), 147 (2.0), 119 (1.8), 91 (2.8) and 83 (6.7). ¹H-NMR (400 MHz, CDCl₃): δ ppm 6.72 (1H, *s*, H-3), 7.40 (1H, *d*, J=2, H-2⁺), 6.98 (1H, *d*, J=8.4, H-5⁺), 7.57 (1H, *dd*, J=2, 8.4, H-6⁺), 4.90 (3H, *s*, 5-OCH₃), 4.01 (3H, *s*, 6-OCH₃), 3.96 (3H, *s*, 7-OCH₃), 3.95 (3H, *s*, 8- OCH₃), 3.94 (3H, *s*, 3 \square -OCH₃) and 3.94 (3H, *s*, 4 \square -OCH₃). ¹³C-NMR (100 MHz, CDCl₃): δ ppm 161.36 (C-2), 106.77 (C-3), 177.44 (C-4), 144.25 (C-5), 136.08 (C-6), 151.63 (C-7), 147.81 (C-8), 148.49 (C-9), 114.76 (C-10), 124.00 (C-1⁺), 108.68 (C-2⁺), 149.39 (C-3⁺), 152.13 (C-4⁺), 111.34 (C-5⁺), 119.83 (C-6⁺), 61.77 (5-OCH₃), 62.37 (6- OCH₃), 62.07 (7- OCH₃), 61.91 (8- OCH₃), 56.19 (3 \square -OCH₃) and 56.07 (4 \square -OCH₃). Spectral data of UV, EI-MS and NMR of this compound were found to be identical to nobiletin upon comparison with the reported data.¹

Text S2: Identification of compound C2 (Isosinensetin): White needles (75 mg) with R_f 0.61 (S3). UV: λ_{max} (MeOH) nm: 248 (sh), 270 (sh), 338; (+ NaOMe): 247 (sh), 269 (sh), 340; (+ AlCl₃): 240 (sh), 270(sh), 342; (+ AlCl₃+ HCl): 239 (sh), 270 (sh), 345; (+ NaOAc): 248 (sh), 270 (sh), 338; (+ NaOAc+ Boric acid): 248 (sh), 270 (sh), 339. EI-MS *m/z* (relative abundance %): 372 (M⁺, 74.66), 357 (100), 342 (17.43), 329 (23.6), 328 (32.4), 327 (23.3), 313 (6.3), 312 (2.0), 299 (12.8), 298 (5.2), 297 (1.4), 283 (1.6), 167 (1.0) and 162 (1.1).¹H-NMR (400 MHz, CDCl₃): δ

ppm 6.72 (1H, *s*, H-3), 6.44 (1H, *s*, H-6), 7.42 (1H, *d*, J=2, H-2'), 6.99 (1H, *d*, J=8.4, H-5'), 7.59 (1H, *dd*, J=2, 8.2, H-6'), 4.01 (3H, *s*, 5-OCH₃), 3.99 (3H, *s*, 7-OCH₃), 3.97 (3H, *s*, 8-OCH₃), 3.95 (3H, *s*, 3'-OCH₃) and 3.95 (3H, *s*, 4'-OCH₃). ¹³C-NMR-APT (100 MHz, CDCl₃): δ ppm 161.02 (C-2), 106.69 (C-3), 177.89 (C-4), 156.40 (C-5), 92.65 (C-6), 156.79 (C-7), 130.71 (C-8), 151.95 (C-9), 109.44 (C-10), 123.86 (C-1'), 108.62 (C-2'), 149.28 (C-3'), 151.95 (C-4'), 111.23 (C-5'), 119.81 (C-6'), 56.36 (5-OCH₃), 56.63 (7-OCH₃), 61.52 (8-OCH₃), 56.09 (3'-OCH₃) and 55.97 (4'-OCH₃). The above spectral data are identical for isosinensetinwith the reported one.²

Text S3: Identification of compound C3 (Limonin): White needles (45 mg) with R_f value 0.74 (S3). EI-MS, *m/z* (relative abundance %): 413 (M⁺-57, 1.82), 347 (100), 329 (8.16), 287 (6.22), 241 (3.83), 201 (4.91), 187 (5.58), 147 (6.46), 136 (9.10), 135 (19.08), 108 (19.94), 95 (39.22), 69 (18.33) and 43 (27.15). ¹H-NMR (400 MHz, DMSO-*d6*): δ ppm 4.04 (1H, *br. s*, H-1), 2.23 (1H, dd, J=3.2, 16, H-2a), 2.68 (1H, dd, J=2, 16.8 H-2b), 2.46 (1H, dd, J=3.2, 14.4, H-5), 2.98 (1H, dd, J=3.6, 16.8, H-6a), 2.85 (1H, t, J=15.2, H-6b), 2.55 (1H, dd, J=2.8, 12.6, H-9), 1.85 (1H, m, H-11a), 1.91 (1H, m, H-11b), 1.50 (1H, m, H-12a), 1.77 (1H, m, H-12b), 4.04 (1-H, br. s, H-15), 5.47 (1-H, s, H-17), 1.18 (3H, s, H-18), 4.46 (1H, d, J=12.8, H-19a), 4.75 (1H, d, J=13.2, H-19b), 7.41 (1H, br. s, H-21), 6.34 (1H, br. s, H-22), 7.40 (1H, br. s, H-23), 1.07 (3H, s, H-24), 1.29 (3H, s, H-25) and 1.17 (3H, s, H-26).¹³C-NMR (100 MHz, DMSO-d6): δ ppm 79.3 (C-1), 35.8 (C-2), 169.23 (C-3), 80.46 (C-4), 61.71 (C-5), 36.54 (C-6), 206.23 (C-7), 51.48 (C-8), 48.27 (C-9), 46.09 (C-10), 19.07 (C-11), 30.31 (C-12), 38.09 (C-13), 65. 81 (C-14), 53.99 (C-15), 166.75 (C-16), 77.94 (C-17), 17.77 (C-18), 65.50 (C-19), 120.12 (C-20), 143.39 (C-21), 109.82 (C-22), 141.26 (C-23), 20.86 (C-24), 31.00 (C-25) and 21.53 (C-26). This compound was confirmed upon comparison of their spectral data with the available literature ¹).

Text S4: Identification of compound C4 (4 Demethylnobiletin): yellow crystals (48 mg) with R_f value 0.9 (S2). UV: λ_{max} (MeOH) nm: 252 (sh), 278, 340; (+NaOMe): 291, 313, 391 (sh); (+AlCl₃): 281, 354; (+AlCl₃+ HCl): 283, 353; (+NaOAc): 252 (sh), 280, 345; (+NaOAc+Boric acid): 283, 336. EI-MS, *m/z* (relative abundance %): 388 (M⁺, 13.0), 373 (25.1), 358 (35.5), 357 (22.3), 344 (20.6), 343 (100), 328 (13.3), 313 (7.2), 225 (0.9), 197 (1.1), 151 (2.6) and 148 (3.2).¹H-NMR (400 MHz, CDCl₃): δ ppm 6.64 (1H, *s*, H-3), 7.45 (1H, *d*, J=2, H-2[•]), 7.03 (1H, *d*, J=8, H-5[•]), 7.61 (1H, *dd*, J=8, 2, H-6[•]), 4.14 (3H, *s*, O-CH₃), 4.01 (3H, *s*, O-CH₃), 4.01 (3H, *s*, O-CH₃), and 3.98 (3H, *s*, O-CH₃). ¹³C-NMR-APT (100 MHz, CDCl₃): δ ppm 161.75 (C-2), 111 104.02 (C-3), 178.60 (C-4), 144.46 (C-5), 137.29 (C-6), 151.15 (C-7), 147.46 (C-8),148.44 (C-9), 114.48 (C-10), 124.14 (C-1[•]), 108.80 (C-2[•]), 150.03 (C- 3[•]), 151.15 (C- 4[•]), 111.30 (C- 5[•]), 120.17 (C- 6[•]), 61.74 (5- OCH₃), 56.02 (6-OCH₃), 62.08 (7-OCH₃), 56.15 (8-OCH₃) and 61.15 (3D-OCH₃). These spectral data are matching with the previously reported ones ¹).

Text S5: Identification of compound C5 (Stigmasterol-O-β-D-glucoside): yellowish white amorphous powder (39 mg) with R_f 0.6 (S3). EI-MS, *m/z* (relative abundance %): 412 [M⁺ sugar] (1), 397 (64.2), 396 (100), 394 (23.5), 382 (17.4), 381 (13.5), 329 (1.1), 303 (1.2), 255 (25.3), 213 (16.4), 189 (5.8), 173 (10.9), 157 (8.2), 145 (37.6), 131 (14.6), 117 (8.4), 105 (21.7), 93 (20.6), 81 (29.7), 69 (27.9), and 55 (19). ¹H- NMR (400 MHz; DMSO-*d*₆): δ (ppm): 3.64 (1H, *m*, H-3), 5.32 (1H, *br* s., H-6), 0.66 (3H, s, H-18), 0.98 (3H, s, H-19), 0.90 (3H, *d*, J = 6.4 Hz, H-21), 4.87 (1H, *m*, H-22), 4.42 (1H, *t*, J = 5.6 Hz, H-23), 0.79 (3H, *d*, J = 7.2 Hz, H-26), 0.79 (3H, *d*, J = 6.8 Hz, H-27), 0.83 (3H, *d*, J = 6.8 Hz, H-29), 4.22 (1H, *d*, J= 7.6 Hz, H-1[']), 3- 3.6 (4H, *m*, sugar protons 2['], 3['], 4['], 5[']), 2.89 (1H, m, H-6[']a), 2.4 (1H, m, H-6[']β) and 1 – 2.9 (16H, CH₂ of steroid nucleus and side chain).¹³C-NMR (100 MHz, DMSO-*d6*): δ ppm 36.84 (C-1), 31.43 (C-2),73.47 (C-3), 41.86 (C-4), 140.45 (C-5), 121.21 (C-6), 31.36 (C-7), 31.39 (C-8), 49.62 (C-9), 36.22 (C-10), 19.72 (C-11), 38.32 (C-12), 45.15 (C-13), 56.19 (C-14), 23.88 (C-15),28.71 (C-16), 55.44 (C-17), 11.7 (C-18), 18.63 (C-19), 35.5 (C-20), 20.95 (C-21), 138.04 (C-22), 128.84 (C-23), 50.61 (C-24), 28.7 (C-25), 19.11 (C-26), 18.94 (C-27), 25.45 (C-28), 11.68 (C-29), 100.81 (C-1 \Box), 76.95 (C-2 \Box), 76.76 (C-3 \Box), 70.09 (C-4 \Box), 76.74 (C-5 \Box) and 61.09 (C-6 \Box). The characterization of this compound depends on comparison with literature.^{3,4}

Text S6: Identification of compound C6 (Hesperidin): Buff amorphous powder (830 mg) with $R_f 0.5$ (S3). λ_{max} (MeOH) nm: 283, 324 (sh.); (+NaOMe): 242, 287, 361; (+ AlCl₃): 306, 380 (sh); (+ AlCl₃+ HCl): 305, 381; (+ NaOAc): 283, 325 (sh); (+ NaOAc+Boric acid): 283, 325 (sh). EI-MS: *m/z* (relative abundance %): 302 [M⁺ - 308] (28.48), 301 (12.93), 286 (10.41), 285 (8.95), 271 (4.89), 259 (3.66), 179 (32.23), 165 (10.65), 152 (13.76), 150 (64.78), 137 (100), 135 (64.61), 129 (15.72), 124 (24.51), 111 (10.85), 107 (20.83), 84 (37.13), 78 (10.31), 77 (21.76), 73 (32.65), 71 (39.32), 69 (41.87), 60 (42.58), 57 (32.52) and 43 (40.68). ¹H-NMR (400 MHz, DMSO-*d*6): δ ppm 5.50 (1H, *dd*, J=4, 12.4, H-2), 3.27 (1H, *m*, H-3a), 2.78 (1H, *dd*, J= 2.6, 17.2, H-3b), 6.12 (1H, *d*, J=1.6, 11.6, H-6'), 4.97 (1H, *d*, J=6.8, H-1"), 4.52 (1H, *br.s*, H-1"), 3.14- 3.63 (10 H, *m*, sugar protons), 1.08 (3H, *d*, J=5.6, CH₃), 12.02 (1H, *s*, 5-OH), 9.1 (1H, s, 3 \Box -OH) and 3.77 (3H, *s*, O-CH₃). ¹³C-NMR (100 MHz, DMSO-*d*6): δ ppm 78.38 (C-2), 42.02 (C-3), 197.04 (C-4), 163.04 (C-5), 96.38 (C-6), 165.14 (C-7), 95.55 (C-8), 162.50 (C-9), 103.32

(C-10), 130.90 (C-1`), 114.15 (C-2`), 146.46 (C-3`), 147.97 (C-4`), 112.03 (C-5`), 117.97 (C-6`), 99.45 (C-1"), 70.27 (C-2"), 75.52 (C-3"), 68.32 (C-4"), 76.27 (C-5"), 66.02 (C-6"), 100.60 (C-1"), 69.60 (C-2"), 70.27 (C-3"), 72.99 (C-4"), 75.52 (C-5") 17.84 (CH₃) and 55.69 (O-CH₃). Hesperidin was identified by comparison their spectral data with the available literature and Co-TLC with authentic sample.¹

References

- 1. D. Hamdan, M. Z. El-Readi, A. Tahrani, F. Herrmann, D. Kaufmann, N. Farrag, A. El-Shazly and M. Wink, Secondary Metabolites of Ponderosa Lemon (Citrus pyriformis) and their Antioxidant, Anti-Inflammatory, and Cytotoxic Activities, *Z. Für Naturforschung C*, 2011, **66**, 385–393.
- 2. R. M. Uckoo, G. K. Jayaprakasha, A. Vikram and B. S. Patil, Polymethoxyflavones Isolated from the Peel of Miaray Mandarin (Citrus miaray) Have Biofilm Inhibitory Activity in Vibrio harveyi, *J. Agric. Food Chem.*, 2015, **63**, 7180–7189.
- 3. J. Goad and T. Akihisa, *Analysis of Sterols*, Springer Netherlands, 1997.
- 4. M. Khatun, M. Billah and M. A. Quader, Sterols and Sterol Glucoside from *Phyllanthus* Species, *Dhaka Univ. J. Sci.*, 2012, **60**, 5–10.