1 Compositional, thermal and water sorption properties of wheat flour:

2 comparing wild-relatives v/s elite wheat varieties used in current plant

3 breeding

4 Deepa Agarwal^{a,c*}, William MacNaughtan^a, Julie King^b, Tim J. Foster^{a+}

^a Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham,
Sutton Bonington Campus, Loughborough, LE12 5RD, UK.

- 7 ^b Division of Plant Sciences, School of Biosciences, University of Nottingham, Sutton
 8 Bonington Campus, Loughborough, LE12 5RD, UK.
- 9 ^c The New Zealand Institute of Plant and Food Research, Canterbury Agriculture & Science
- 10 Centre, 74, Gerald St, Lincoln, 7608, New Zealand.
- 11 * Corresponding author email: deepa.agarwal@plantandfood.co.nz

12

13 Supplementary Data

- 14 Supplementary Tables:
- 15 Table T1: Assignments of the different absorbance bands in FTIR spectra of wheat flour
- 16 (Gorgulu et al., 2007, Naumann et al., 2000, Yu et al., 2007, Singh et al., 2011, Liu et al., 2005,
- 17 Robert et al., 2005, Moroi et al., 2011, Saulnier et al., 2009, Kizil et al., 2002, Akerholm et al.,
- 18 2004).

Wavelength (cm ⁻¹)	Band Assignments
3500-3300	OH-N-H stretching vibrations: water, carbohydrates, proteins
3008	Olefinic =CH
2959	CH3 asymmetric stretching: mainly lipids with contribution from proteins, carbohydrates, nucleic acids
2923	CH2 asymmetric stretching: mainly lipids with contribution from proteins, carbohydrates, nucleic acids
2872	CH3 symmetric stretching: mainly proteins with contribution from lipids, carbohydrates, nucleic acids
2852	CH2 symmetric stretching: mainly lipids with contribution from proteins, carbohydrates, nucleic acids
1745	C=O ester stretching, lipids, carbohydrates
1642	Amide I (C=O stretching): proteins
1540	Amide II (C-N stretching, N-H bending): mainly proteins
1514	Lignin

1446	C-H: cell wall polysaccharides
1414	O-H bending: cell wall polysaccharides, alcohols and carboxylic acids
1369, 1335, 1315, 1280	Cellulose
1239	Amide III (C-N and N-H stretching): mainly proteins
1205	Cellulose
1150	Starch
1124	Starch
1101	Pectin
1076	β -(1 - >6) or β -(1 - >3) linked galactan
1049	Arabinogalactorhamnoglycan, starch
990	Arabinoxylans
932	Starch
859	Starch

- 19
- 20 Supplementary Figures:

21

Figure S1: The ATR-FTIR spectra (vector normalised) of wheat gluten (Sigma, UK) and native
wheat starch (Healy group, UK).

41 Figure S2: Principal component analysis (PC2 versus PC1) scores plot of the vector
42 normalised spectra in the (a) carbohydrate region: 1200-600 cm⁻¹ range, and (b) legnin
43 region: 1570-1482 cm⁻¹ range.

25

Figure S3: IR ratio of the absorbances 1047/1020 cm⁻¹ for different wheat flours. IR ratio was calculated by extracting IR absorbance values at 1047 and 1022 cm⁻¹ from the vector normalised spectra after water subtraction, baseline correction and deconvolution. The bands at 1047 and 1022 cm⁻¹ generally associated with the ordered and amorphous structures of starch, respectively. The ratio of absorbance can be used to quantify the degree of "order" in starch [ordered starch] samples (VanSoest et al., 1995).

63 **Figure S4**: *GAB model fitting of sorption data for all wheat flours. The experimental sorption* 64 *data have been fitted with the three-parameter GAB model (Guggenheim-Andersen-de Boer* 65 *model). There is good agreement between experimental data and predicted values (R^2 =* 66 *0.997).*

82 Figure S5: GAB model fitting of sorption data for all wheat flours, (a) Monolayer sorption,
83 and (b) Multilayer sorption.