Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2020

Groups	Nori	mal	Мос	del	IDF-I	Low	IDF-I	High
kcal% composition	kca	1%	kcal	1%	kcal%		kcal%	
Protein	20)	20)	20)	20)
Carbohydrate	70)	20)	20)	20)
Fat	10)	60)	60)	60)
Total	10	0	100		100		100	
Ingredient	g	kcal	g	kcal	g	kcal	g	kcal
Casein, 30 Mesh	200	800	200	800	200	800	200	800
L-Cystine	3	12	3	12	3	12	3	12
Corn Starch	506.2	2024.8	0	0	0	0	0	0
Maltodextrin 10	125	500	125	500	125	500	125	500
Sucrose	68.8	275.2	68.8	275	68.8	275	68.8	275
Cellulose, BW200	50	0	50	0	50	0	50	0
Soybean Oil	25	225	25	225	25	225	25	225
Lard	20	180	245	2205	245	2205	245	2205
Mineral Mix S10026	10	0	10	0	10	0	10	0
DiCalcium Phosphate	13	0	13	0	13	0	13	0
Calcium Carbonate	5.5	0	5.5	0	5.5	0	5.5	0
Potassium Citrate, 1 H ₂ O	16.5	0	16.5	0	16.5	0	16.5	0
Vitamin Mix V10001	10	40	10	40	10	40	10	40
Choline Bitartrate	2	0	2	0	2	0	2	0
IDF from <i>L. japonica</i>					19.84	0	40.73	0
Total	1055.05	4057	773.85	4057	793.64	4057	814.58	4057
kcal/g		3.85		5.24		5.21		5.18

Table S1 Diet compositions of Normal, Model, IDF-Low and IDF-High groups.

Groups	Normal	Model	IDF-Low	IDF-High
Food intake [g/d/mouse]	2.87±0.27	2.31±0.33	2.29±0.32	2.36±0.21
Energy intake	11.01+1.05	12.13±1.75	11.94±1.67	12.21±1.09
[kcal/d/mouse]	11.01±1.03			

Table S2 Food and energy intake of Normal, Model, IDF-Low and IDF-High groups (mean ± SD).

Fourier transform infrared (FT-IR) analysis of IDF

The IDF sample was ground in a mortar, blended with dried KBr, and pressed into pellets, followed by FT-IR analysis at 400 cm⁻¹ to 4000 cm⁻¹ using an FT-IR spectrometer (Tansor27, BRUKER, Germany).

As can be seen in Fig.S1, peaks at 3410 cm⁻¹ and 2927 cm⁻¹ were likely caused by the stretching vibration of –OH and C–H, respectively, which were related to the intra- and intermolecular hydrogen bonds of the sugar unit of IDF.¹ IDF presented intense absorption bands at 1642 cm⁻¹ (COO–asymmetric stretching vibration of alginate carboxyl groups) and 1408 cm⁻¹ (COO–symmetric stretching vibrations of carboxyl groups).² The band at ~1248 cm⁻¹ (S=O stretching) suggested the presence of sulfate in IDF.³ In addition, the peak at 1033 cm⁻¹ was assigned to the skeletal mode vibrations of α -1,4 glycosidic linkages due to C–O–C stretching.⁴

Fig. S1 FT-IR spectra of IDF.

Statement of using diethyl ether as an anesthesia

Diethyl ether was used to anaesthetize the mice by inhalation to reduce animal suffering in this report. However, diethyl ether is well recognized to be hazardous to animal workers because of the risk of explosions. Additionally, induction of anesthesia is slow and potentially unpleasant to the individual animal, causing irritation to the eyes, nasal mucosae and the upper respiratory tract. Therefore, it should have been avoided. We have updated our protocol and will use isoflurane instead in our future study.

References

- 1. N. Li, X. Fu, M. Xiao, X. Wei, M. Yang, Z. Liu and H. Mou, Enzymatic preparation of a low-molecular-weight polysaccharide rich in uronic acid from the seaweed Laminaria japonica and evaluation of its hypolipidemic effect in mice, *Food Funct.*, 2020, **11**, 2395-2405.
- 2. Z. Rostami, M. Tabarsa, S. You and M. Rezaei, Relationship between molecular weights and biological properties of alginates extracted under different methods from Colpomenia peregrina, *Process Biochemistry*, 2017, **58**, 289-297.
- 3. C. Cui, J. Lu, D. Sun-Waterhouse, L. Mu, W. Sun, M. Zhao and H. Zhao, Polysaccharides from Laminaria japonica: Structural characteristics and antioxidant activity, *LWT-Food Sci. Technol.*, 2016, **73**, 602-608.
- 4. N. Wang, S. Huang, Y. Zhang, F. Zhang and J. Zheng, Effect of supplementation by bamboo shoot insoluble dietary fiber on physicochemical and structural properties of rice starch, *LWT-Food Sci. Technol.*, 2020, **129**, 109509.