- 1 Wheat cell walls and constituent polysaccharides induce similar
- 2 microbiota profiles upon *in vitro* fermentation despite different short
- ³ chain fatty acid end-product levels.
- 4 Shiyi Lu^a, Deirdre Mikkelsen^{a,b}, Hong Yao^a, Barbara A. Williams^a, Bernadine M. Flanagan^a, Michael J.
- 5 Gidley^{a*}
- 6 ^a Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The
- 7 University of Queensland, St Lucia, QLD, 4072, Australia
- ⁸ ^b School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
- 9 * <u>m.gidley@uq.edu.au</u>

Supplementary Materials

S1. Chemical analyses for AX, MLG, Mix and WCW degradation and SCFA production a. The time course of AX degradation and total SCFA production b. The time course of MLG degradation and total SCFA production c. The time course of AX/MLG component degradation in Mix and total SCFA production of Mix and WCW d. CP/ MAS ¹³C solid state NMR spectra for WCW rigid components over the fermentation time course ²⁵.

S2. A rarefaction plot for samples for 16S rRNA sequencing (n=32)

S3. Alpha diversity analysis for substrates at each time point									
Samples	Richness	Evenness	Shannon Index	Simpson's Index	Chao1				
Inoculum_0h	403	0.903	5.42	0.992	406				
AX-12h	456	0.821	5.06	0.979	475				
AX-24h	451	0.818	5.03	0.980	472				
AX-48h	542	0.875	5.55	0.991	566				
BC-12h	486	0.844	5.25	0.977	502				
BC-24h	419	0.878	5.22	0.986	441				
BC-48h	464	0.850	5.24	0.987	482				
Mix-12h	436	0.853	5.20	0.984	448				
Mix-24h	463	0.849	5.24	0.985	478				
Mix-48h	507	0.890	5.57	0.993	525				
MLG-12h	483	0.846	5.26	0.983	500				
MLG-24h	428	0.853	5.19	0.982	439				

MLG-48h	516	0.878	5.51	0.991	536
WCW-12h	481	0.854	5.30	0.985	498
WCW-24h	522	0.851	5.35	0.986	549
WCW-48h	619	0.881	5.71	0.993	653

S5. Core microbiome analysis for the top **50** dominant genera a. Abundances grouped by substrates **b**. Abundances grouped by fermentation time. A genus is marked as present in the core, pan and unique groups if it was identified in at least 40% of the samples within the group.

				-								
Remo val Time		0h			12h			24h			48h	
Subst -rate	Ac	Pr	Bu	Ac	Pr	Bu	Ac	Pr	Bu	Ac	Pr	Bu
АХ	0.23 ^ª	0.15 [°]	0.00 ^ª	3.82 ^a b	1.94 ^ª	0.35 [°] b	6.17 ^ª	4.26 ^ª	0.47 ^ª	6.24 ^ª	4.16 [°]	0.62 ^ª
MLG	0.22 ^ª	0.15 ^ª	0.00 ^a	4.38 ^a	2.44 ^a	0.55 [°] b	6.55 ^b	3.86 ^b	0.82 ^b	6.24 ^ª	3.79 ^b	0.84 ^b
Mix	0.22 ^ª	0.14 ^a	0.00 ^ª	4.01 ^ª	1.92 ^ª	0.40 ^a b	5.03 ^a bc	2.98 [°]	0.48 [°] cd	5.91 [°] b	3.36 ^b	0.65 ^ª
wcw	0.25 [°]	0.14 ^ª	0.00 ^ª	2.88 ^a b	1.35 [°]	0.34 ^a b	5.05 ^a b	2.73 [°]	0.62 ^c	5.31 ^b	2.89 [°]	0.78 ^b c
ВС	0.28 ^ª	0.13 ^ª	0.00 ^ª	1.89 ^b	0.62 ^ª	0.33 ^b	1.95 ^d	0.71 ^d	0.37 ^d	2.55 ^d	0.89 ^e	0.43 ^d

S6. SCFA production for each substrate ²⁵

*Ac represents acetate; Pr represents propionate; Bu represents butyrate; Letters in the same column show significant differences (P<0.05).

S7. Comparison of predicted enzyme genes for degrading different polysaccharides in each substrate generated from PICRUSt2 a. Predicted enzyme genes for degrading cellulose **b.** Predicted enzyme genes for degrading MLG **c.** Predicted enzyme genes for degrading AX. Means of relative abundances are shown in the bar chart; only enzymes identified in PICRUSt2 were included.

S8. Comparison in predicted pathway genes for SCFA production generated from PICRUSt2 a. Predicted pathway genes for acetate production **b.** Predicted pathway genes for propionate production **c.** Predicted pathway genes for butyrate production *Means of relative abundances were shown in the bar chart; only pathways identified in PICRUSt2 were included.