1 SUPPORTING INFORMATION

- 2 Demonstrating the involvement of an active efflux mechanism in the intestinal absorption of
- 3 chlorogenic acid and quinic acid using a Caco-2 bidirectional permeability assay.
- 4
- 5 Olivier Mortelé^{1,3}, Jennifer Jörissen², Irina Spacova², Sarah Lebeer², Alexander L.N. van Nuijs¹, Nina
- 6 Hermans³
- 7
- ⁸ ¹Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- 9 ²Research Group Environmental Ecology and Applied Microbiology (ENdEMIC), Department of
- 10 Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen
- 11 ³Natural Products and Food Research & Analysis (NatuRA), University of Antwerp, Universiteitsplein
- 12 1, 2610 Wilrijk, Belgium
- 13 *-corresponding authors: olivier.mortele@uantwerpen.be, nina.hermans@uantwerpen.be

14

15 1.1. LC-MS/MS analysis

- 16 1.1.1. Chlorogenic acid and ferulic acid-D₃
- 17 The used mobile phase compositions were ultrapure water with 0.1 % (v/v) formic acid (A) and MeOH
- 18 (B) with a constant flow of 0.3 mL/min. The gradient was constructed as follows: for 1 min B was used
- 19 at 2%, followed by an increase to 98% B over 3.5 min. The column was rinsed for 6 min with 98 % B
- 20 and re-equilibrated at 2% B for 6 min. The LC-stream was directed to the waste after 6 min of analysis-
- 21 time to limit source contamination.
- 22 Chlorogenic acid, and ferulic acid- D_3 as internal standard, were measured in negative MRM mode 23 (Table 1). Gas temperature and flow were set at 200 °C and 14 L/min respectively. A nebulizer pressure 24 of 20 psi was chosen, while sheath gas temperature and flow were set to 400 °C and 11 L/min. A 25 capillary and nozzle voltage of 4000 V and 2000 V respectively were chosen.

26 1.1.2. Quinic acid

- The mobile phase compositions were ultrapure water with 0.04% (v/v) formic acid (A) and MeOH (B) with a constant flow of 0.3 mL/min. Mobile phase B started at 1% for 2 min, followed by an increase to 98% B over 8 min. The column was rinsed for 6 min before 4 min re-equilibration at 1% B. The LCstream was directed to the waste after 6 min analysis-time.
- 31 Quinic acid was analyzed in negative MRM mode. Ferulic acid-D₃ was used as the internal standard 32 (Table 1). Optimized source parameters were set as followed: gas temperature of 200 °C, gas flow of 33 14 L/min, nebulizer pressure of 50 psi, sheath gas temperature of 400 °C, sheath gas flow of 12 L/min, 34 capillary voltage of 2500 V and a nozzle voltage of 2000 V.

35 1.1.3. Propranolol and digoxin

- Mobile phase A consisted of 20 mM ammoniumacetate in ultrapure water. Acetonitrile was used as mobile phase B. The chromatographic run started at 10% B for 1 min, followed by an increase to 95% B over 9 min. The column was rinsed for 5 min at 95 % B before 5 min re-equilibration at 10% B. The LC-stream was directed to the waste after 8 min of analysis-time to limit source contamination.
- 40 Propranolol, propranolol- D_7 (internal standard), digoxin and digoxin- D_3 (internal standard) were
- 41 analyzed in positive MRM mode (Table 1). Gas temperature, flow and nebulizer pressure were identical
- 42 to the parameters described for chlorogenic acid. Sheath gas temperature was set to 200 °C with a
- 43 flow of 11 L/min. Capillary and nozzle voltages were 3500 V and 1500 V.

- **Figure S1:** Overview of the calibration curves of chlorogenic acid (A), quinic acid (B), propranolol (C)
- $\,$ and digoxin (D).

Table S1: Overview of the calculated P_{app} values and efflux ratios for chlorogenic acid and the positive

50 control compounds

Compound	P _{app} (A-B) (cm/s) (± SD) x 10 ⁻⁶ (n=3)	P _{app} (B-A) (cm/s) (± SD) x 10 ⁻⁶ (n=3)	Efflux ratio
Chlorogenic acid 10 µM	2.42 (± 0.16)	8.01 (± 0.41)	3.3 (± 0.2)
Chlorogenic acid 50 μM	2.61 (± 0.20)	8.41 (± 0.77)	3.2 (± 0.4)
Propranolol	5.45 (± 0.86)	8.40 (± 0.56)	1.5 (± 0.3)
Digoxin	0.36 (± 0.02)	7.91 (± 0.73)	22.0 (± 2.4)

52 Table S2: Overview of the calculated Papp values and efflux ratios for quinic acid and the positive

53 control compounds.

Compound	P _{app} (A-B) (cm/s) (± SD) x 10 ⁻⁶ (n=3)	P _{app} (B-A) (cm/s) (± SD) x 10 ⁻⁶ (n=3)	Efflux ratio
Quinic acid	3.8 (± 0.69)	22.6 (± 1.8)	5.9 (± 1.2)
Propranolol	5.14 (± 0.35)	5.22 (± 0.35)	1.0 (± 0.1)
Digoxin	0.70 (± 0.16)	6.17 (± 0.23)	8.7 (± 2.1)

54

51