Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2021

Supplementary materials for

An alternative solution for α -linolenic acid supplements: In vitro digestive properties of

silkworm pupae oil in a pH-stat system

Cheng-Hai Yan a, Xiao-Meng Xun a, Jiao Wang a, Jin-Zheng Wang a, Shuai You a, Fu-An Wu a,

b, Jun Wang a, b, *

^a Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology,

Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China;

^b Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and

Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences,

Zhenjiang, Jiangsu 212018, China.

To whom all correspondence should be addressed.

* Corresponding author. *Phone*: +86-511-85635867, *Fax*: +86-511-85620901.

E-mail: wangjun@just.edu.cn (Prof. Dr. Jun Wang)

Table S1. Composition of saliva juice, gastric juice, duodenal juice and bile juice for simulated in vitro digestion model.

Simulated solution	Saliva juice (pH 6.8±0.2)	Gastric juice (pH 1.30±0.02)	Duodenal juice (pH 8.1±0.2)	Bile juice (pH 8.2±0.2)
Inorganic solution	10 mL 89.6g/L KCl 10 mL 20g/L KSCN 10 mL 88.8g/L NaH ₂ PO ₄ 1.7 mL 175.3g/L NaCl	15.7 mL 175.3g/L NaCl 3 mL 88.8g/L NaH ₂ PO ₄ 9.2 mL 89.6g/L KCl 18 mL 22.2g/L CaCl ₂	40 mL 175.3g/L NaCl 40 mL 84.7g/L NaHCO ₃ 10 mL 8g/L KH ₂ PO ₄ 6.3 mL 89.6g/L KCl	30 mL 175.3g/L NaCl 68.3 mL 84.7g/L NaHCO ₃ 4.2 mL 89.6g/L KCl 150 μL 37%g/g HCl
	57 g/L Na_2SO_4 10 mL 84.7 g/L $NaHCO_3$	10 mL 30.6g/L NH ₄ Cl 6.5 mL 37%g/g HCl	10 mL 5g/L MgCl ₂ 180 μL 37%g/g HCl	
Organic solution	8mL 25g/L Urea	10 mL 65g/L Glucose 10 mL 2g/L Glucuronic acid 3.4 mL 25g/L Urea	4mL 25g/L Urea	10 mL 25g/L Urea
		1 mL 33g/L Glucosamine Hydrochloride		
Add to mixture	290 mg α -amylase	1 g BSA	9 mL 22.2g/L CaCl_2	$10~\mathrm{mL}~22.2\mathrm{g/L}~\mathrm{CaCl}_2$
inorganic and organic solutions	15 mg Uric acid 25mg Mucin	2.5 g Pepsin 3g Mucin	1 g BSA	1.8 g BSA 30 g Bile extract

The inorganic and organic solutions were mixed and filled up to 500 mL with distilled water and then other compounds were dissolved. Finally, pH value of each juice was adjusted to their own each value.