Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2020

ELECTRONIC SUPPORTING INFORMATION Role of Life Cycle Externalities in the Valuation of Protic Ionic Liquids – A Case Study in Biomass Pretreatment Solvents

Husain Baaqel^{1,2}, Ismael Diaz³, Víctor Tulus^{4,5}, Benoît Chachuat^{*1,2}, Gonzalo Guillén-Gosálbez^{†4}, and Jason P. Hallett¹

 ¹Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
 ²Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
 ³Departamento Ingeniera Química y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Madrid, Spain
 ⁴Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 1, Zurich 8093, Switzerland
 ⁵Departament d'Enginyeria Qumica, Universitat Rovira i Virgili, Tarragona, Spain

^{*}Corresponding Author: b.chachuat@imperial.ac.uk

 $^{^{\}dagger}$ Corresponding Author: gonzalo.guillen.gosalbez@chem.ethz.ch

Appendix A. Modeling and simulation

This section details the properties used for the pseudo components in Aspen-HYSYS v9 for process simulation. For estimating the enthalpy of formation, the molecular structure of the cation and anion are first drawn and optimized in a molecular modeling and graphics software such as ArgusLab. The structure is then processed with the quantum chemistry tool MOPAC, an open source software applied here for calculating the charge density profiles and enthalpies of formation. The heat of formation of ionic liquids (ILs) is obtained as shown in Equation S1 below from the Born-Haber cycle⁴.

$$\Delta H_{f_{\rm IL}}^{\circ} = \Delta H_{f_{\rm cation}}^{\circ} + \Delta H_{f_{\rm anion}}^{\circ} - \Delta H_{\rm L}$$
(S1)

 $\Delta H_{\rm L}$ is the lattice energy calculated from Equation S2 below⁶.

$$\Delta H_{\rm L} = U_{\rm pot} + \left[p \left(\frac{n_{\rm m}}{2} - 2 \right) + q \left(\frac{n_{\rm x}}{2} - 2 \right) \right] RT \tag{S2}$$

The parameters $n_{\rm m}$ and $n_{\rm x}$ depend on the nature of the cation and anion, respectively. They are equal to 3 for monoatomic ions, 5 for linear polyatomic ions, and 6 for non-linear polyatomic ions. p and q are the oxidation states of the cation and anion, respectively. The potential energy $U_{\rm pot}$ is calculated from Equation S3 below.

$$U_{\rm pot} = \gamma \left(\frac{\rho_{\rm m}}{M_{\rm m}}\right)^{1/3} + \delta \tag{S3}$$

The parameters $\rho_{\rm m}$ and $M_{\rm m}$ denote the density and the molecular weight of the IL, respectively. The coefficients γ and δ depend on the stoichiometry of the IL.

Property	Value	Units
MW	82.10	${ m g\ mol^{-1}}$
BP	198^{1}	$^{\circ}\mathrm{C}$
Density	1030^{1}	${ m kg}~{ m m}^{-3}$
$\Delta H_{ m f}$	125700^{10}	$ m kJ~kmol^{-1}$
$T_{ m c}$	490.90	$^{\circ}\mathrm{C}$
$P_{\rm c}$	6086	kPa
$V_{ m c}$	0.26	${ m m}^3~{ m kmol}^{-1}$
Acentricity	0.35	—

Table S1: 1-methylimidazole properties

Table S2: $[HMIM][HSO_4]$ properties

Property	Value	Units
MW	180.20	${ m g\ mol^{-1}}$
BP	401.800^{9}	°C
Density	1484^{9}	${ m kg}~{ m m}^{-3}$
ΔH_{f}	-938000	kJ kmol ⁻¹
$T_{ m c}$	739.6^{9}	$^{\circ}\mathrm{C}$
$P_{\rm c}$	9189^{9}	kPa
$V_{\mathbf{c}}$	0.43^{9}	$m^3 \text{ kmol}^{-1}$
Acentricity	0.67^{9}	_

Table S3: $[TEA][HSO_4]$ properties

Property	Value	Units
MW	199.30	$g \text{ mol}^{-1}$
BP	377.10^{9}	$^{\circ}\mathrm{C}$
Density	1143^{9}	$ m kg/m^3$
$\Delta H_{ m f}$	-884100	$ m kJ~kmol^{-1}$
$T_{ m c}$	644.30^9	$^{\circ}\mathrm{C}$
$P_{\rm c}$	4732^{9}	kPa
$V_{ m c}$	0.62^{9}	${ m m}^3~{ m kmol}^{-1}$
Acentricity	0.74^{9}	—

Appendix B. Economic assessment

This appendix details the breakdown of the capital and operational expenditures, the prices of raw materials, and the costing results obtained from process simulation. The CAPEX consists of equipment costs, offsite costs, engineering and construction costs, and contingency charges. The equipment costs were estimated using Equation S4 below⁸.

$$C_{\text{ISBL}} = \sum_{e \in \text{Equipment}} F_e C_e \tag{S4}$$

Here, C_e is the cost of purchased equipment e on a U.S. Gulf Coast basis as of January 2006, and F_e is the corresponding equipment installation factor. Due to unavailability of current equipment data, their costs are calculated as:

$$C_e = a + bS^n \tag{S5}$$

where a and b are cost constants, n is equipment type exponent and S is a size parameter. Finally, because of inflation, capital costs need to be escalated to reflect up-to-date costs. This is usually done using cost indices:

$$\operatorname{Cost}_{\operatorname{new}} = \operatorname{Cost}_{\operatorname{old}} + \frac{\operatorname{Cost} \operatorname{index}_{\operatorname{new}}}{\operatorname{Cost} \operatorname{index}_{\operatorname{old}}}$$
(S6)

In this work, the Chemical Engineering Plant Cost Index (CEPCI) for 2006 and 2019 are used. CEPCI is one of the most commonly-used published composite indices and was developed based on 4 main components: process equipment, construction labor, buildings and supervision and engineering.

Table S4: Breakdown of cost estimation

CAPEX, C_{CAPEX} Fixed capital, $C_{\rm FC}$: Onsite capital costs, ISBL Equipment cost Offsite capital costs, OSBL = 40% ISBL Engineering and construction costs, $C_{\text{Eng}} = 10\%(\text{ISBL} + \text{OSBL})$ Contingency charges, $C_{\rm Con} = 15\%$ (ISBL + OSBL) **OPEX**, C_{OPEX} Variable cost of production, C_{VCP} : Raw materials, $C_{\rm RM}$ Utilities, $C_{\rm U}$ Fixed cost of production, C_{FCP} : Operation labor, $C_{\rm OL} = 720,000 {\rm USD}_{2019}^{1}$ Supervision, $C_{Sup} = 25\% C_{OL} = 180,000 \text{USD}_{2019}$ Salaries, $C_{\text{Sal}} = 50\%(C_{\text{OL}} + C_{\text{Sup}}) = 450,000 \text{USD}_{2019}$ Maintenance, $C_{\text{Main}} = 3\%$ ISBL Land, $C_{\text{Land}} = 1\% (\text{ISBL} + \text{OSBL})$ Taxes and insurance, $C_{\text{Tax}} = 1.5\% C_{\text{FC}}$ General plant overhead, $C_{\text{GPO}} = 65\% (C_{\text{OL}} + C_{\text{Sup}} + C_{\text{Sal}} + C_{\text{Main}})$

^aBased on 4.8 operator per shift with 3 shift positions and an average salary of \$50k per operator.

Table S5: Commodity prices used in economic assessment

Commodity	Price (\$)
Methylamine (kg)	0.98
Glyoxal (kg)	1.78
Formaldehyde (kg)	0.38
Ammonia (kg)	0.56
Sulfuric acid (kg)	0.05
Triethylamine (kg)	1.36
Ionized water (m^3)	0.87
Cooling water (kg)	0.50
Steam (1000 kg)	25.0
Electricity (kWh)	0.16

Unit	Specifications		Eq. Cost ($\$$ kg ⁻¹)
Flash Tank	Diameter / Length (m)	6.35 / 22.22	1.48×10^{-4}
Reactor	Volume (m^3)	13.59	2.17×10^{-4}
Heater	Area (m^2)	2160.68	7.15×10^{-4}
Cooler 1	Area (m^2)	159.45	$7.15 imes 10^{-4}$
Cooler 2	Area (m^2)	2265.48	7.15×10^{-4}
Cooling Tower	Vol Flow $(L s^{-1})$	4624.28	$1.67 imes 10^{-3}$
Pump 1	Vol Flow $(L s^{-1})$	5.49	7.25×10^{-6}
Pump 2	Vol Flow $(L s^{-1})$	13.81	$8.74 imes 10^{-6}$
Pump 3	Vol Flow $(L s^{-1})$	1.96	6.73×10^{-6}
Compressor 1	Power (kWh)	497.51	$1.69 imes 10^{-4}$
Compressor 2	Power (kWh)	520.19	1.74×10^{-4}
Compressor 3	Power (kWh)	519.87	$1.74 imes 10^{-4}$
Compressor 4	Power (kWh)	7621.36	8.28×10^{-4}
CAPEX Com	CAPEX Component Total Cost (\$ k		Total Cost (\$ kg ⁻¹)
ISBL			4.1×10^{-3}
OSBL			$1.6 imes 10^{-3}$
C_{Eng}			5.8×10^{-4}
$C_{ m Con}$			$8.6 imes 10^{-4}$

Table S6: Detailed CAPEX costs for 1-methylimidazole

Table S7: Detailed OPEX costs for 1-methylimidazole

Feedstock/Utility	Cost ($\$ kg ⁻¹)
Methylamine	0.39
Glyoxal	1.34
Formaldehyde	0.15
Ammonia	0.12
Water	2×10^{-4}
Steam	0.03
Cooling Water	0.73
Electricity	0.05
OPEX Component	Total Cost (\$ kg ⁻¹)
$C_{\rm CVP}$	2.8235
$C_{\rm FCP}$	0.0130

Unit	Specifications		Eq. Cost $(\$ kg^{-1})$
Flash Tank	Diameter / Length (m)	3.55 / 12.80	1.48×10^{-4}
Reactor	Volume (m^3)	4.19	1.11×10^{-4}
Heater	Area (m^2)	227.21	8.74×10^{-4}
Cooler 1	Area (m^2)	299.69	$8.74 imes 10^{-4}$
Cooler 2	Area (m^2)	136.58	8.74×10^{-4}
Cooler 3	Area (m^2)	4969.67	$8.74 imes 10^{-4}$
Cooling Tower	Vol Flow (L s ⁻¹)	1211.98	5.54×10^{-4}
Pump 1	Vol Flow $(L s^{-1})$	2.45	6.80×10^{-6}
Pump 2	Vol Flow $(L s^{-1})$	12.16	8.42×10^{-6}
Pump 3	Vol Flow $(L s^{-1})$	2.30	6.78×10^{-6}
Pump 4	Vol Flow $(L s^{-1})$	10.07	8.04×10^{-6}
Pump 5	Vol Flow $(L s^{-1})$	2.08	6.75×10^{-6}
Pump 6	Vol Flow $(L s^{-1})$	3.69	6.98×10^{-6}
CAPEX Com	CAPEX Component Total Cost (\$1		Total Cost (\$ kg ⁻¹)
ISBL			1.68×10^{-3}
OSBL			6.72×10^{-4}
C_{Eng}			2.35×10^{-4}
$C_{ m Con}$			3.53×10^{-4}

Table S8: Detailed CAPEX costs for $[\mathrm{HMIM}][\mathrm{HSO}_4]$

Table S9: Detailed OPEX costs for $[\mathrm{HMIM}][\mathrm{HSO}_4]$

Feedstock/Utility	$Cost (\$ kg^{-1})$
Sulfuric Acid	0.03
1-Methylimidazole	1.30
Water	2×10^{-4}
Steam	4×10^{-3}
Cooling Water	0.12
Electricity	1.37×10^{-5}
OPEX Component	Total Cost (\$ kg ⁻¹)
$C_{\rm CVP}$	1.45
$C_{\rm FCP}$	0.0108

Unit	Specifications		Eq. Cost ($\$$ kg ⁻¹)
Flash Tank	Diameter / Length (m)	3.21 / 11.30	9.08×10^{-5}
Reactor	Volume (m^3)	3.79	1.05×10^{-4}
Heater	Area (m^2)	191.93	3.36×10^{-4}
Cooler 1	Area (m^2)	244.19	$3.36 imes 10^{-4}$
Cooler 2	Area (m^2)	133.09	3.36×10^{-4}
Cooler 3	Area (m^2)	1527.61	$3.36 imes 10^{-4}$
Cooling Tower	Vol Flow (L s ⁻¹)	575.07	3.20×10^{-4}
Pump 1	Vol Flow $(L s^{-1})$	2.22	6.77×10^{-6}
Pump 2	Vol Flow $(L s^{-1})$	5.77	7.30×10^{-6}
Pump 3	Vol Flow $(L s^{-1})$	11.76	8.35×10^{-6}
Pump 4	Vol Flow $(L s^{-1})$	2.26	6.77×10^{-6}
Pump 5	Vol Flow $(L s^{-1})$	10.07	8.04×10^{-6}
Pump 6	Vol Flow $(L s^{-1})$	1.68	6.70×10^{-6}
CAPEX Com	CAPEX Component Total Cost (\$1		Total Cost (\$kg ⁻¹)
ISBL			8.96×10^{-4}
OSBL			3.58×10^{-4}
C_{Eng}			1.25×10^{-4}
$C_{ m Con}$			1.88×10^{-4}

Table S10: Detailed CAPEX costs for $[\mathrm{TEA}][\mathrm{HSO}_4]$

Table S11: Detailed OPEX costs for $[\mathrm{TEA}][\mathrm{HSO}_4]$

Feedstock/Utility	$Cost (\$ kg^{-1})$
Sulfuric Acid	0.02
1-Methylimidazole	0.69
Water	2×10^{-4}
Steam	3×10^{-3}
Cooling Water	$5.27 imes 10^{-2}$
Electricity	1.23×10^{-5}
OPEX Component	Total Cost (\$ kg ⁻¹)
$C_{\rm CVP}$	0.7716
$C_{\rm FCP}$	0.0101

Appendix C. Environmental assessment

This appendix details the proxy data, processes and flows used in the inventory phase of LCA as well as the midpoint results from the characterization phase. For both human health and ecosystem quality expressed in biophysical units, monetization factors using the values in Table S18 were applied. Overall, the monetization proceeds as follows:

Monetized Cost =
$$\sum_{i \in \text{Impacts}} MF_i EP_i$$
 (S7)

where MF_i denotes the monetization factor for endpoint impact *i*, and EP_i the corresponding damage. Next, a currency exchange factor and inflation factor are applied to express a monetary value in USD₂₀₁₉. For resource availability already expressed in monetary value, only an inflation factor is used for the conversion into USD₂₀₁₉.

Uncertainty in LCA data is quantified using the Pedigree matrix approach¹¹, where a score $U_{D,i}$ between 1 and 5 is assigned to the data based on five criteria: reliability, completeness, temporal, geographical and technological differences. All of these scores are combined with a basic uncertainty factor $U_{D,b}$ to determine the standard deviation σ_k of a log-normal distribution for each mass and energy flow k:

$$\sigma_k = \exp \sqrt{\ln(U_{\rm D,b})^2 + \sum_{i=1}^5 \ln(U_{\rm D,i})^2}$$
(S8)

Data Category	Proxy data	Proxy method
	Raw materials	0.2% by mass of inflows are assumed to be vaporized or leaked
Air emissions	Cooling water	4% by volume of total cooling water are assumed to be vaporized or leaked
	CO_2	90% by mass of carbon in waste stream is assumed to be completely burned in waste treatment to produce CO_2 as per the following complete combustion equation: $C_{\alpha}H_{\beta}O_{\gamma} + (\alpha + \frac{\beta}{4} - \frac{\gamma}{2})O_2 \longrightarrow \alpha CO_2 + \frac{\beta}{2}H_2O$
	COD	The chemical oxygen demand (COD) or total oxygen consumed is assumed to be equivalent to the amount of oxygen needed to react with the amount of carbon remaining in the waste stream after treatment which is assumed to be 10% of total carbon
Water emissions	BOD	For worst case scenario, the biological oxygen demand (BOD) which is the oxygen consumed due to biological aerobic digestion by organisms is assumed to be equivalent to the amount of COD
	TOC	The total organic carbon (TOC) which is the total amount of carbon is assumed to be equivalent to 10% of the total carbon in the waste stream which is the amount of carbon remaining after treatment
	DOC	For waste case scenario, dissolved organic carbon (DOC) is assumed to be equivalent to TOC

Table S12: Proxy data used in LCI

~			~~~~~
Group	Inventory	Flow	STDEV
		(per-kg product)	
T / C	Water, cooling, unspecified natural origin, RER	0.54639 m^3	1.0502
Inputs from	Water, river, RER	0.27319 m^3	1.0502
nature	Water, well, in ground, RER	$0.27319 \ { m m}^3$	1.0502
	Methylamine {RER} production Cut-off	0.40601 kg	1.3269
	Chemical factory, organics {GLO} market for Cut-off	4.00×10^{-10} p	2.9905
	Heat, district or industrial, natural gas {RER} market	6.03910 MJ	1.0502
	group for Cut-off		
	Electricity, medium voltage {RER} market group for	$0.29371 \ \mathrm{kW}$	h 1.0502
Inputs from	Cut-off		
technosphere	Heat, from steam, in chemical industry $\{RER\}$ market	$0.67102~\mathrm{MJ}$	1.0502
(materials)	for heat, from steam, in chemical industry Cut-off		
	Glyoxal $\{RER\} \mid production \mid Cut-off$	$0.7587 \ \mathrm{kg}$	1.3269
	Tap water $\{RER\} \mid market group for \mid Cut-off$	$0.23551 \ { m kg}$	1.3269
	Formaldehyde {RER} oxidation of methanol Cut-off	$0.39252~\mathrm{kg}$	1.3269
	Ammonia, liquid $\{RER\}$ ammonia production, steam	$0.22263 \ { m kg}$	1.3269
	reforming, liquid Cut-off		
	Carbon dioxide, fossil	$1.0246 { m ~kg}$	1.0502
	Methylamine	$0.0008104 \ \mathrm{kg}$	1.0502
Emissions to	$Water/m^3$	$2.23251 \times 10^{-5} \mathrm{m}^3$	1.0502
air	Glyoxal	$1.5144 \times 10^{-3} \text{ kg}$	1.0502
	Ammonia	$4.4437 \times 10^{-4} \text{ kg}$	1.0502
	Formaldehyde	$7.8347\times10^{-4}~{\rm kg}$	1.0502
	BOD5, Biological Oxygen Demand	$8.2825 \times 10^{-2} \text{ kg}$	1.4918
	COD, Chemical Oxygen Demand	$8.2825 \times 10^{-2} \text{ kg}$	1.4918
	DOC, Dissolved Organic Carbon	$3.1021 \times 10^{-2} \text{ kg}$	1.4918
	TOC, Total Organic Carbon	$3.1021 \times 10^{-2} \text{ kg}$	1.4918
Emissions to	Water, RER	0.54662 m^3	1.0502
water	Methylamine	$9.7271 \times 10^{-3} \text{ kg}$	1.0502
	Glyoxal	$0.01118 \ {\rm kg}$	1.0502
	Formaldehyde	$0.01373 \ { m kg}$	1.0502
	Ammonia	$0.08065~\mathrm{kg}$	1.0502
	Imidazole	$0.02934~\mathrm{kg}$	1.0502
Outputs to	Wastewater, average {Europe without Switzerland}	0.00335 m^3	1.0502
technosphere	market for wastewater, average Cut-off, U		

1-methylimidazole inventory
1-methylimidazole inventory

Group	Inventory	Flow (per-kg product)	STDEV
Inputs from nature	Water, cooling, unspecified natural origin, RER Water, river, RER Water, well, in ground, RER	$\begin{array}{c} 0.14759 \ \mathrm{m^3} \\ 0.0738 \ \mathrm{m^3} \\ 0.0738 \ \mathrm{m^3} \end{array}$	$1.0502 \\ 1.0502 \\ 1.0502$
Inputs from technosphere (materials)	1-Methylimidazole Chemical factory, organics {GLO} market for Cut-off Heat, district or industrial, natural gas {RER} market group for Cut-off Electricity, medium voltage {RER} market group for Cut-off Heat, from steam, in chemical industry {RER} market for heat, from steam, in chemical industry Cut-off Tap water {RER} market group for Cut-off Sulfuric acid {RER} production Cut-off, U	$\begin{array}{c} 0.45657 \text{ kg} \\ 4.00 \times 10^{-10} \text{ p} \\ 0.84646 \text{ MJ} \\ 0.00013 \text{ kWl} \\ 0.09405 \text{ MJ} \\ 0.27581 \text{ kg} \\ 0.54543 \text{ kg} \end{array}$	1.3269 2.9905 1.0502 h 1.0502 1.0502 1.3269 1.3269
Emissions to air	Imidazole Water/m ³ Sulfuric acid	$\begin{array}{c} 0.00091 \ \mathrm{kg} \\ 6.454 11 \times 10^{-6} \ \mathrm{m}^3 \\ 0.00109 \ \mathrm{kg} \end{array}$	$1.0502 \\ 1.0502 \\ 1.0502$
Emissions to water	Water, RER	0.14789 m^3	1.0502
Outputs to technosphere	Wastewater, average {Europe without Switzerland} market for wastewater, average Cut-off, U	$2.50 \times 10^{-5} \text{ m}^3$	1.0502

Table S14: $[HMIM][HSO_4]$ inventory

Group	Inventory	Flow (per-kg product)	STDEV
Inputs from nature	Water, cooling, unspecified natural origin, RER Water, river, RER Water, well, in ground, RER	$\begin{array}{c} 0.07003 \ \mathrm{m}^{3} \\ 0.0738 \ \mathrm{m}^{3} \\ 0.0738 \ \mathrm{m}^{3} \end{array}$	$\begin{array}{c} 1.0502 \\ 0.03502 \\ 0.03502 \end{array}$
Inputs from technosphere (materials)	Triethylamine RER production Cut-off, U Chemical factory, organics {GLO} market for Cut-off Heat, district or industrial, natural gas {RER} market group for Cut-off Electricity, medium voltage {RER} market group for Cut-off Heat, from steam, in chemical industry {RER} market for heat, from steam, in chemical industry Cut-off Tap water {RER} market group for Cut-off Sulfuric acid {RER} production Cut-off, U	$\begin{array}{c} 0.50885 \text{ kg} \\ 4.00 \times 10^{-10} \text{ p} \\ 0.12841 \text{ MJ} \\ 0.00012 \text{ kWh} \\ 0.01427 \text{ MJ} \\ 0.27104 \text{ kg} \\ 0.49319 \text{ kg} \end{array}$	1.3269 2.9905 1.0502 1.0502 1.0502 1.0502 1.3269 1.3269
Emissions to air	Triethylamine Water/m ³ Sulfuric acid	$\begin{array}{c} 1.02\times 10^{-3} \ \mathrm{kg} \\ 3.3422\times 10^{-6} \ \mathrm{m}^{3} \\ 0.00098 \ \mathrm{kg} \end{array}$	$1.0502 \\ 1.0502 \\ 1.0502$
Emissions to water	Water, RER	0.07032 m^3	1.0502
Outputs to technosphere	Wastewater, average {Europe without Switzerland} market for wastewater, average Cut-off, U	$2.02\times10^{-5}~\mathrm{m}^{3}$	1.0502

Table S15: $[TEA][HSO_4]$ inventory

Impact indicator	Unit	[TEA][HSO ₄]	[HMIM][HSO ₄]	Acetone	Glycerol
Global warming	kg CO_2 eq	1.69209	2.72340	2.44755	3.49701
Stratospheric ozone	kg CFC11 eq	3.20×10^{-7}	7.32×10^{-7}	$1.20 imes 10^{-7}$	1.94×10^{-5}
depletion	· ·				
Ionizing radiation	kBq Co-60 eq	0.07024	0.20873	0.02407	0.11677
Ozone formation,	kg NO _x eq	0.00366	0.00397	0.00560	0.00599
Human health					
Fine particulate	kg PM2.5 eq	0.00281	0.00369	0.00293	0.00513
matter formation	-				
Ozone formation,	kg NO_x eq	0.00414	0.00422	0.00615	0.00628
Terrestrial ecosystems					
Terrestrial	kg SO_2 eq	0.00897	0.01131	0.00840	0.01505
acidification					
Freshwater	kg P eq	0.00071	0.00078	0.00030	0.00075
eutrophication					
Marine eutrophication	kg N eq	0.00052	0.00916	1.30E-05	0.00479
Terrestrial ecotoxicity	kg 1,4-DCB eq	7.85354	9.89144	1.71027	5.52801
Freshwater ecotoxicity	kg 1,4-DCB eq	0.05117	0.08063	0.01474	0.05628
Marine ecotoxicity	kg 1,4-DCB eq	0.07388	0.10394	0.02073	0.06780
Human carcinogenic	kg 1,4-DCB eq	0.05406	0.10076	0.04632	0.06241
toxicity					
Human non-	kg 1,4-DCB eq	1.71520	2.29409	0.42870	2.89151
carcinogenic toxicity					
Land use	m ² a crop eq	0.02964	0.03823	0.00876	4.96817
Mineral resource	kg Cu eq	0.00674	0.00847	0.00125	0.00640
scarcity	_				
Fossil resource	kg oil eq	0.99145	1.18605	1.40073	0.51561
scarcity					
Water consumption	m^3	0.10347	0.44592	0.03007	0.05052

Table S16: LCA ReCiPe midpoint results, for 1 kg of solvent

Table S17: LCA ReCiPe endpoint results, for 1 kg of solvent

Impact indicator	Unit	$[TEA][HSO_4]$	$[\mathrm{HMIM}][\mathrm{HSO}_4]$	Acetone	Glycerol
Human health	DALY	4.138×10^{-6}	6.700×10^{-6}	4.432×10^{-6}	7.467×10^{-6}
Ecosystem quality	$\operatorname{species} \times \operatorname{yr}$	9.444×10^{-9}	1.765×10^{-8}	1.015×10^{-8}	5.920×10^{-8}
Resource availability	USD_{2013}	0.387	0.421	0.535	0.165

Table S18: Monetization, currency exchange and inflation factors

Damage area	Unit	$\begin{array}{c} \textbf{Monetization} \\ (\text{EUR}_{2003}/\text{DALY}) \end{array}$	$\begin{array}{c} \textbf{Currency factor} \\ (\text{USD}_{2003}/\text{EUR}_{2003}) \end{array}$	$\frac{\text{Inflation factor}}{(\text{USD}_{2019}/\text{USD}_{2003})}$
Human health	DALY	74,000	1.16	1.46
Ecosystem quality	$species \times yr$	9,500,000	1.16	1.46
Resource availability	USD_{2013}	-	-	1.08

Appendix D. Additional results

This appendix presents the direct cost and environmental impacts of the solvents using biomass loading as the functional unit. The data used to convert functional unit from kg of solvent to kg of biomass are reported in Table S19.

Table S19: Biomass pretreatment data used for converting the functional unit

Solvent	Reference	Biomass	Ratio (kg solvent/ kg biomass)	Fraction (wt%)	Recycle (%)	Makeup (kg solvent/ ton biomass)
[TEA][HSO ₄] [HMIM][HSO ₄] Acetone	ionoSolv ^{3,5} ionoSolv ^{3,5} Organosolv ²	Miscanthus Miscanthus Wood Bigo hull	5 5 10	80% 80% 70% 100%	99.2% 99.2% 98% 75%	$32 \\ 32 \\ 140 \\ 2500$

Figure S1: Direct costs of solvents per kg of treated biomass

Figure S2: Endpoint environmental impacts of solvents per kg of treated biomass

References

- [1] 1-Methylimidazole (M50834), accessed: 15-Mar-2020. URL https://www. sigmaaldrich.com/catalog/product/aldrich/m50834.
- [2] C. Arato, E. K. Pye, and G. Gjennestad. The Lignol Approach to Biorefining of Woody Biomass to Produce Ethanol and Chemicals. In B. H. Davison, B. R. Evans, M. Finkelstein, and J. D. McMillan, editors, 26th Symposium on Biotechnology for Fuels and Chemicals, pages 871–882. Totowa, NJ, 2005. doi: 10.1007/978-1-59259-991-2_74.
- [3] A. Brandt-Talbot, F. J. V. Gschwend, T. M. Fennell, P. S. and Lammens, B. Tan, J. Weale, and J. P. Hallett. An economically viable ionic liquid for the fractionation of lignocellulosic biomass. *Green Chemistry*, 19(13):3078–3102, 2017. doi: 10.1039/ C7GC00705A.
- [4] H. Gao, C. Ye, C. M. Piekarski, and J. M. Shreeve. Computational characterization of energetic salts. *The Journal of Physical Chemistry C*, 111(28):10718–10731, 2007. doi: 10.1021/jp070702b.
- [5] F. J. V. Gschwend, F. Malaret, S. Shinde, A. Brandt-Talbot, and J. P. Hallett. Rapid pretreatment of Miscanthus using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures. *Green Chemistry*, 20(15):3486–3498, 2018. doi: 10. 1039/C8GC00837J.
- [6] H Jenkins, D. Tudela, and L. Glasser. Lattice potential energy estimation for complex ionic salts from density measurements. *Inorganic Chemistry*, 41(9):2364–2367, 2002. doi: 10.1021/ic011216k.
- [7] J. G. Lynam and C. J. Coronella. Glycerol as an ionic liquid co-solvent for pretreatment of rice hulls to enhance glucose and xylose yield. *Bioresource Technology*, 166:471–478, 2014. doi: 10.1016/j.biortech.2014.05.086.
- [8] G. Towler and R. Sinnott. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Elsevier, 2012.
- [9] J. O. Valderrama and R. E. Rojas. Critical properties of ionic liquids. Revisited. Industrial & Engineering Chemistry Research, 48(14):6890–6900, 2009.
- [10] S. P. Verevkin, D. H. Zaitsau, V. N. Emel'yanenko, Y. U. Paulechka, A. V. Blokhin, A. B. Bazyleva, and G. J. Kabo. Thermodynamics of Ionic Liquids Precursors: 1-Methylimidazole. *The Journal of Physical Chemistry B*, 115(15):4404–4411, 2011. doi: 10.1021/jp201752j.
- [11] B. P. Weidema and M. S. Wesnæs. Data quality management for life cycle inventoriesan example of using data quality indicators. *Journal of Cleaner Production*, 4(3):167–174, 1996. doi: 10.1016/S0959-6526(96)00043-1.