Supplementary Information

# Biomimetic regioselective and high-yielding Cu(I)-catalyzed dimerization of sinapate esters in green solvent Cyrene<sup>™</sup>: towards sustainable antioxidant and anti-UV ingredients

Matthieu M. Mention,<sup>a</sup> Amandine L. Flourat,<sup>a</sup> Cédric Peyrot<sup>a</sup> and Florent Allais<sup>a</sup>\*

<sup>a</sup> URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France

\* Corresponding author: <a href="mailto:florent.allais@agroparistech.fr">florent.allais@agroparistech.fr</a>

## **Table of Contents**

| 1. | Ge                                                                                                                                                                                                                                                                                                                                                 | General Information |                                                                |            |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------|------------|--|--|--|
| 2. | Synthesis                                                                                                                                                                                                                                                                                                                                          |                     |                                                                |            |  |  |  |
|    | 2.1.                                                                                                                                                                                                                                                                                                                                               | Sy                  | nthesis of malonate mono-esters                                | S3         |  |  |  |
|    | 2.1                                                                                                                                                                                                                                                                                                                                                | 1.                  | General Procedure (GP1)                                        | S3         |  |  |  |
|    | 2.1                                                                                                                                                                                                                                                                                                                                                | 2.                  | General Procedure (GP2)                                        | S4         |  |  |  |
|    | 2.2.                                                                                                                                                                                                                                                                                                                                               | Sy                  | nthesis of sinapate esters                                     | S4         |  |  |  |
|    | 2.2                                                                                                                                                                                                                                                                                                                                                | 2.1.                | General Procedure (GP3)                                        | S4         |  |  |  |
|    | 2.2                                                                                                                                                                                                                                                                                                                                                | 2.2.                | Ethyl sinapate                                                 | S4         |  |  |  |
|    | 2.2                                                                                                                                                                                                                                                                                                                                                | 2.3.                | Sinapoyl di- <i>tert</i> -butyl malate                         | S4         |  |  |  |
|    | 2.3.                                                                                                                                                                                                                                                                                                                                               | Sy                  | nthesis of sinapate esters β-β' dehydrodimers                  | S4         |  |  |  |
|    | 2.3                                                                                                                                                                                                                                                                                                                                                | 8.1.                | Initial Procedure                                              | S4         |  |  |  |
|    | 2.3                                                                                                                                                                                                                                                                                                                                                | 8.2.                | Optimized Procedure                                            | \$5        |  |  |  |
|    | 2.4.                                                                                                                                                                                                                                                                                                                                               | Μ                   | lethylation of ethyl sinapate $\beta$ - $\beta$ ' dehydrodimer | \$5        |  |  |  |
|    | 2.5.                                                                                                                                                                                                                                                                                                                                               | Ac                  | cetylation of ethyl sinapate β-β' dehydrodimer                 | S5         |  |  |  |
|    | 2.6.                                                                                                                                                                                                                                                                                                                                               | Hy                  | ydrogenation of ethyl sinapate β-β' dehydrodimer               | S6         |  |  |  |
|    | 2.7.                                                                                                                                                                                                                                                                                                                                               | Es                  | ter reduction of ethyl sinapate β-β' dehydrodimer              | S6         |  |  |  |
| 3. | Со                                                                                                                                                                                                                                                                                                                                                 | mpou                | unds Characterizations                                         | S6         |  |  |  |
|    | 3.1.                                                                                                                                                                                                                                                                                                                                               | Μ                   | lalonate mono-ester                                            | S6         |  |  |  |
|    | 3.2.                                                                                                                                                                                                                                                                                                                                               | Si                  | napate esters                                                  | S7         |  |  |  |
|    | 3.3.                                                                                                                                                                                                                                                                                                                                               | Si                  | napate esters $\beta$ - $\beta'$ dimers                        | S9         |  |  |  |
| 4. | Enz                                                                                                                                                                                                                                                                                                                                                | zyma                | tic dimerization of ethyl sinapate                             | S14        |  |  |  |
|    | <b>Figure S1</b> . HPLC chromatogram for the dimerization of ethyl sinapate with laccase from <i>Trametes versicolor</i> (Zorbax Eclipse Plus C18 (2.1 mm*50 mm*1.8 $\mu$ m), $\lambda$ = 320 nm, flow rate set at 0.6 mL.min <sup>-1</sup> , oven temperature at 30 °C, and simplify the probability of CLL CN from 75 (25 to 70 (20 in 10 min)). |                     |                                                                |            |  |  |  |
| F  | gi auli                                                                                                                                                                                                                                                                                                                                            | timi-               | ppice. $H_2$ of character actor $\theta$ , $\theta'$ dimension | 514<br>C14 |  |  |  |
| э. | Οþ                                                                                                                                                                                                                                                                                                                                                 | unnz                | ation of the smapate ester p-p_umenzation                      | 514        |  |  |  |

|                          | 5.1.                                                                                                                                                              | Screening of solvents                                                                                                                                                                                                                                                                                                                               | S14          |  |  |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|
|                          | Figure S<br>(blue) a<br>mL.min                                                                                                                                    | 52. HPLC chromatograms of the dimerization of ethyl sinapate in pyridine (black), ethanol (pink), ethyl acound Cyrene™ (green) (Zorbax Eclipse Plus C18 (2.1 mm*50 mm*1.8 µm), λ = 320 nm, flow rate set at 0.6 <sup>-1</sup> , oven temperature at 30 °C, and gradient applied: H <sub>2</sub> O/CH <sub>3</sub> CN from 75/25 to 70/30 in 18 min) | etate<br>S14 |  |  |  |  |  |  |
|                          | 5.2.                                                                                                                                                              | Design of experiments (D.O.E.)                                                                                                                                                                                                                                                                                                                      | S14          |  |  |  |  |  |  |
|                          | Figure                                                                                                                                                            | <b>53  </b> Summary of fit for conversion (left) and yield (right)                                                                                                                                                                                                                                                                                  | S17          |  |  |  |  |  |  |
| 6.                       | Antir                                                                                                                                                             | adical properties                                                                                                                                                                                                                                                                                                                                   | S18          |  |  |  |  |  |  |
|                          | <b>Figure S4</b>   Antiradical properties from the ABTS <sup>•+</sup> assay: comparison of EC <sub>50</sub> between sinapate esters and their $\beta$ - $\beta$ ' |                                                                                                                                                                                                                                                                                                                                                     |              |  |  |  |  |  |  |
| dimers                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                     |              |  |  |  |  |  |  |
| 7. Characterization Data |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                     |              |  |  |  |  |  |  |
|                          | 7.1.                                                                                                                                                              | <sup>1</sup> H & <sup>13</sup> C NMR spectra                                                                                                                                                                                                                                                                                                        | S19          |  |  |  |  |  |  |
|                          | 7.2.                                                                                                                                                              | IR spectra                                                                                                                                                                                                                                                                                                                                          | S65          |  |  |  |  |  |  |
|                          | 7.3.                                                                                                                                                              | UV Spectra                                                                                                                                                                                                                                                                                                                                          | 588          |  |  |  |  |  |  |
|                          | 7.4.                                                                                                                                                              | ABTS inhibition                                                                                                                                                                                                                                                                                                                                     | \$98         |  |  |  |  |  |  |
| 8.                       | Refe                                                                                                                                                              | References                                                                                                                                                                                                                                                                                                                                          |              |  |  |  |  |  |  |

# 1. General Information

Syringaldehyde, copper(I) bromide, aniline, pyridine, malonic acid, heptan-1-ol, *tert*-butanol, *iso*-propanol, gaïacol, sodium carbonate, methyl iodine, acetic anhydride, DIBAI-H, palladium on carbon (10wt. % loading), potassium persulfate, Laccase from *Trametes versicolor* and Horseradish peroxidase (type II and IV) were purchased from Sigma Aldrich. Meldrum's acid, ABTS and 2-ethylhexan-1-ol were purchased from TCI. HCl<sub>conc</sub> and solvents were purchased from Fisher scientific and used as received. Cyrene was kindly offered by Circa Group (Australia). All chemicals were used directly without purification.

Chromatographic purifications of products were accomplished using a flash-prep LC system puriFlash® 4100 from Interchim with prepacked silica column (30  $\mu$ m, Interchim PF-Si30-HP), dual wavelength collection ( $\lambda$  = 254 and 320 nm) and a mixture of cyclohexane/ethyl acetate as eluant. <sup>1</sup>H NMR spectra were recorded on a Brucker Fourier 300 (300 MHz) and were calibrated with residual Acetone-d6, DMSO-d6 or CDCl<sub>3</sub> protons signals at  $\delta$  2.05, 2.50 or 7.26 ppm respectively. Data are reported as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, dd = doublet of doublets, td = triplet of doublets and m = multiplet), integration, coupling constant (Hz) and assignment. <sup>13</sup>C NMR spectra were recorded on a Brucker Fourier 300 (75 MHz) and were calibrated with Acetone-d6, DMSO-*d6* or CDCl<sub>3</sub> signals at  $\delta$  29.84, 39.52 or 77.16 ppm respectively. Data are reported as follows: chemical shift ( $\delta$  ppm) and attribution. All NMR assignments were made using COSY, HMBC and HSQC spectrum. Solvents were dried on a MBRAUN-SPS-800. IR spectra were recorded on an Agilent Cary 630 FTIR Spectrometer and are reported in frequency of absorption (cm<sup>-1</sup>). UV/Vis spectra were recorded in ethanol (C =  $10^{-5}$  mol/L) on an Agilent Cary 60 UV-Vis with 1 cm cuvette made of quartz and are reported in wavelength (nm). Melting points were recorded on a Mettler Toledo MP50 Melting Point System (T<sub>initial</sub>: 40 °C; Heating: 2 °C/min until 170 °C) with ME-18552 sample tubes. HPLC analysis were carried out on a Dionex UltiMate 3000 equipped with a Zorbax Eclipse Plus C18 column (2.1\*50 mm\*1.8 µm), a DAD and a Corona ultra RS both at  $\lambda$  = 320 nm (flow rate set at 0.6 mL.min<sup>-1</sup>, oven temperature at 30 °C, and gradient applied: H<sub>2</sub>O/CH<sub>3</sub>CN from 75/25 to 70/30 in 18 min). High resolution mass spectrometries were performed by the PlAneT platform at URCA on a Micromass GC-TOF. Modde v.12.0 software (Umetrics AB, Sweden) was used to generate the design of experiments and analyze the experimental data by Response Surface Methodology (RSM), based on a 4 factors and 3 central points cubic centered face (CCF) design.

ABTS assays were adapted from Re et al.<sup>1</sup>. In summary, ABTS<sup>•+</sup> solution was prepared in water with ABTS (C = 7 mmol.L<sup>-1</sup>) and potassium persulfate (final concentration 2.45 mmol.L<sup>-1</sup>). Mixture was left to agitate in the dark for 16h and diluted by 50 with ethanol to reach around 0.7 of absorbance at 734 nm and 37 °C. In a 96 wells microplate, a mixture containing 10  $\mu$ L of antiradical solution (final concentration in microwell were 2 to 60  $\mu$ mol.L<sup>-1</sup>) and 190  $\mu$ L of ABTS solution incubated at 37 °C. Absorbance was recorded at 734 nm until stabilization of the signal (6 min). To determine the exact value of inhibition, a reference (190  $\mu$ L of ABTS solution with 10  $\mu$ L of Ethanol) and a blank (200  $\mu$ L of ethanol) were performed at the same time as each experiment. All experiments were carried out on an Epoch 2 from Biotek using 96-wells microplate.

## 2. Synthesis

### 2.1. Synthesis of malonate mono-esters

Malonate mono-esters were synthesized following methods described in the literature<sup>2,3</sup>. All malonate mono-esters were used without further purification for the synthesis of corresponding sinapate esters.

2.1.1. General Procedure (GP1)



Meldrum's acid (5.0 g, 35 mmol) and the corresponding alcohol (35 mmol, 1 eq) were melted at 95 °C and agitated for 3 h. After cooling at r.t., the reaction mixture was partitioned between ethyl acetate and saturated NaHCO<sub>3</sub>. The aqueous layer was acidified until pH = 1 with concentrated HCl and extracted with ethyl acetate. The resulting organic layer was dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated.

### 2.1.2. General Procedure (GP2)



Meldrum's acid (4.0 g, 27.8 mmol) and an excess of alcohol were heated at reflux overnight. After cooling at r.t., the excess of alcohol was evaporated under reduced pressure.

#### 2.2. Synthesis of sinapate esters

#### 2.2.1. General Procedure (GP3)



The corresponding malonate mono-esters (8.6 mmol, 1.5 M), syringaldehyde (1.89 g, 10.4 mmol) and aniline (79  $\mu$ L, 0.86 mmol) were mixed in pyridine (5.7 mL). The reaction mixture was stirred at 60 °C overnight. After cooling at r.t., the reaction was partitioned between ethyl acetate and 1M aqueous HCl. The organic layer was dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated before being purified by flash chromatography using cyclohexane/ethyl acetate.

2.2.2. Ethyl sinapate

Ethyl sinapate was synthesized following method described by Jaufurally et al.<sup>4</sup>

#### 2.2.3. Sinapoyl di-tert-butyl malate

Sinapoyl di-tert-butyl malate was synthesized following method described by Allais et al.<sup>5</sup>

#### 2.3. Synthesis of sinapate esters $\beta$ - $\beta$ ' dehydrodimers

2.3.1. Initial Procedure



The corresponding sinapate ester (32 mmol) and Cu(I)Br (0.459 g, 3.2 mmol) were dissolved in pyridine (80 mL, 993 mmol) and warmed up at 50 °C. The reaction was stirred for 24 h in an opened flask. After cooling at r.t., the reaction mixture was diluted with ethyl acetate and washed with 1M aqueous HCl. The organic layer was dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated before being purified by flash chromatography using cyclohexane/ethyl acetate.

#### 2.3.2. Optimized Procedure



The corresponding sinapate ester (1 mmol, 1.81 M), Cu(I)Br (14.3 mg, 0.1 mmol) and pyridine (61  $\mu$ L, 0.76 mmol) were mixed in Cyrene<sup>TM</sup> (552  $\mu$ L). The reaction was stirred at 51.5 °C for 7 h in an opened flask. After cooling at r.t., the reaction mixture was diluted with ethyl acetate and washed with 1M aqueous HCl and water. The organic layer was dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated to afford the corresponding  $\beta$ - $\beta$ ' dimer.

#### 2.4. Methylation of ethyl sinapate $\beta$ - $\beta$ ' dehydrodimer



Ethyl sinapate  $\beta$ - $\beta'$  dehydrodimer (201 mg, 0.40 mmol, 0.5 M) was dissolved in anhydrous DMF (800  $\mu$ L) and placed under N<sub>2</sub>. After 10 min of stirring, K<sub>2</sub>CO<sub>3</sub> (276 mg, 2 mmol) and methyl iodide (125  $\mu$ L, 2 mmol) were added and the reaction was kept agitating under N<sub>2</sub> at r.t. overnight. The mixture was then diluted in 1M aqueous HCl and partitioned between ethyl acetate and H<sub>2</sub>O. The organic layer was dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated.

#### 2.5. Acetylation of ethyl sinapate $\beta$ - $\beta$ ' dehydrodimer



Ethyl sinapate  $\beta$ - $\beta$ ' dehydrodimer (201 mg, 0.40 mmol) was dissolved in acetic anhydride (189  $\mu$ L, 2 mmol) and pyridine (193  $\mu$ L, 2.4 mmol) and stirred at r.t. overnight. The resulting precipitate was filtered and washed with 0.1M aqueous HCl and water, before being dried under vacuum.

### 2.6. Hydrogenation of ethyl sinapate $\beta$ - $\beta$ ' dehydrodimer



Ethyl sinapate  $\beta$ - $\beta$ ' dehydrodimer (1 g, 2 mmol) was dissolved in ethanol and stirred under N<sub>2</sub> for 10 min. Palladium on carbon (100 mg, 10% w/w) was added and the mixture was stirred 10 more minutes before being placed under H<sub>2</sub> for 60 h. The reaction was flushed with N<sub>2</sub> and filtered over a pad of Celite<sup>®</sup> prior concentration under reduced pressure.

#### 2.7. Ester reduction of ethyl sinapate $\beta$ - $\beta$ ' dehydrodimer



Ethyl sinapate  $\beta$ - $\beta'$  dehydrodimer (2 g, 4 mmol, 0.1 M) was dissolved in anhydrous dichloromethane under N<sub>2</sub>. A solution of DIBAI-H (27.7 mL, 27.7 mmol, 1 M in CH<sub>2</sub>Cl<sub>2</sub>) was added dropwise at 0 °C over 15 min. After 1 h, reaction was stopped by adding 15 mL of ethanol before being concentrated. The crude oil was partitioned between water and ethyl acetate. Organic layer was washed with brine, dried over anhydrous MgSO<sub>4</sub> and concentrated before being purified by flash chromatography using cyclohexane/ethyl acetate.

### 3. Compounds Characterizations

#### 3.1. Malonate mono-ester

GP1 was followed with heptan-1-ol to obtain **monoheptyl malonate** as a colorless oil (77% yield). <sup>1</sup>**H NMR** (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.88 (t, 3H, J = 6 Hz, H<sub>10</sub>), 1.29 (m, 8H, H<sub>6,7,8,9</sub>), 1.65 (m, 2H, H<sub>5</sub>), 3.44 (s, 2H, H<sub>2</sub>), 4.17 (t, 2H, J = 6.7 Hz, H<sub>4</sub>); <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>):  $\delta$  14.2 (C<sub>10</sub>), 22.7 (C<sub>9</sub>), 25.8 (C<sub>8</sub>), 28.5 (C<sub>5</sub>), 29.0 (C<sub>7</sub>), 31.8 (C<sub>6</sub>), 40.7 (C<sub>2</sub>), 66.4 (C<sub>4</sub>), 167.5 (C<sub>3</sub>), 171.11 (C<sub>1</sub>); **IR** (FTIR): 2926, 2856, 1714, 1463, 1410, 1318, 1150 cm<sup>-1</sup>; **HRMS** (*m/z*) [M+Na]<sup>+</sup> calcd for C<sub>10</sub>H<sub>18</sub>O<sub>4</sub>Na, 225.1103; found, 225.1103.

$$HO 1 2 3 0 4 5 6 8 10 7 9 11$$

GP1 was followed with 2-ethylhexan-1-ol to obtain **mono-2-ethylhexyl malonate** as a light-yellow oil (83% yield). <sup>1</sup>**H NMR** (300 MHz, DMSO-*d6*): δ 0.85 (m, 6H, H<sub>9,11</sub>), 1.29 (m, 8H, H<sub>6,7,8,10</sub>), 1.54 (m, 1H, H<sub>5</sub>), 3.36 (s, 2H, H<sub>2</sub>), 3.97 (s, 2H, H<sub>4</sub>), 12.76 (s, 1H, H<sub>COOH</sub>); <sup>13</sup>**C NMR** (75 MHz, DMSO-*d6*): δ 10.8 (C<sub>9</sub>), 14.0 (C<sub>11</sub>), 22.4 (C<sub>8</sub>), 23.1 (C<sub>10</sub>), 28.3 (C<sub>7</sub>), 29.7 (C<sub>6</sub>), 38.1 (C<sub>5</sub>), 41.7 (C<sub>4</sub>), 66.6 (C<sub>2</sub>), 167.0 (C<sub>3</sub>), 168.1 (C<sub>1</sub>); **IR** (FTIR): 2958, 2928, 2861, 1717, 1461, 1410, 1382, 1318, 1267, 1149 cm<sup>-1</sup>; **HRMS** (*m/z*) [M+Na]<sup>+</sup> calcd for C<sub>11</sub>H<sub>20</sub>O<sub>4</sub>Na, 239.1259; found, 239.1262.

HO 
$$1 2 3 0 4 5$$

GP2 was followed with *tert*-butanol to obtain **mono**-*tert*-butyl malonate as a pale-yellow oil (97% yield). Characterization data were identical with those already described<sup>6</sup>.

$$HO 1 2 3 0 4 5$$

GP2 was followed with *iso*-propanol to obtain **mono**-*iso*-propyl malonate as a pale-yellow oil (76% yield). Characterization date were identical with those already described<sup>7</sup>.

GP1 was followed with gaïacol to obtain **monogaïacol malonate** as a white crystal (60% yield). Characterization data were identical with those already described<sup>8</sup>.

#### 3.2. <u>Sinapate esters</u>

**Ethyl sinapate** was synthesized in two steps following methods from Jaufurally et al.<sup>4</sup> (80% global yield). Characterization data were identical with those already described<sup>4</sup>.



GP3 was followed with monoheptyl malonate to obtain **heptyl sinapate** as a brown oil (72% yield). <sup>1</sup>**H NMR** (300 MHz, Acetone-*d6*):  $\delta$  0.77 (t, 3H, J = 6.8 Hz, H<sub>12</sub>), 1.23 (m, 8H, H<sub>8,9,10,11</sub>), 1.58 (m, 2H, H<sub>7</sub>), 3.79 (s, 6H, H<sub>5</sub>), 4.08 (t, 2H, J = 6.7 Hz, H<sub>6</sub>), 6.19 (d, 1H, J = 15.9 Hz, H<sub>β</sub>), 6.65 (s, 2H, H<sub>2</sub>), 7.47 (d, 1H, J = 15.9 Hz, H<sub>α</sub>); <sup>13</sup>**C NMR** (75 MHz, CDCl<sub>3</sub>):  $\delta$  14.1 (C<sub>12</sub>), 22.6 (C<sub>11</sub>), 26.0 (C<sub>10</sub>), 28.8 (C<sub>7</sub>), 29.0(C<sub>9</sub>), 31.8 (C<sub>8</sub>), 56.3 (C<sub>5</sub>), 64.7 (C<sub>6</sub>), 105.0 (C<sub>2</sub>), 116.0 (C<sub>β</sub>), 125.9 (C<sub>1</sub>), 137.1 (C<sub>4</sub>), 144.9 (C<sub>α</sub>), 147.2 (C<sub>3</sub>), 167.3 (C<sub>γ</sub>); **IR** (FTIR): 3406, 2925, 2853, 1700, 1631, 1601, 1511, 1455, 1424, 1375, 1337, 1279, 1252, 1214,

1149, 1109 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  202, 241, 330 nm; **HRMS** (*m/z*) [M+H]<sup>+</sup> calcd for C<sub>18</sub>H<sub>27</sub>O<sub>5</sub>, 323.1858; found, 323.1855.



GP3 was followed with mono-2-ethylhexyl malonate to obtain **2-ethylhexyl sinapate** as a yellow-orange oil (66% yield). <sup>1</sup>H NMR (300 MHz, DMSO-*d6*): δ 0.88 (t, 6H, J = 7.4 Hz, H<sub>11,13</sub>), 1.34 (m, 8H, H<sub>8,9,10,12</sub>), 1.59 (m, 1H, H<sub>7</sub>), 3.80 (s, 6H, H<sub>5</sub>), 4.05 (dd, 2H, *J* = 5.7, 2.0 Hz, H<sub>6</sub>), 6.53 (d, 1H, J = 15.9 Hz, H<sub>β</sub>), 7.03 (s, 1H, H<sub>2</sub>), 7.54 (d, 1H, J = 15.9 Hz, H<sub>α</sub>), 9.00 (s, 1H, H<sub>phenol</sub>); <sup>13</sup>C NMR (75 MHz, DMSO-*d6*): δ 10.9 (C<sub>11</sub>), 14.0 (C<sub>13</sub>), 22.5 (C<sub>10</sub>), 23.2 (C<sub>12</sub>), 28.4 (C<sub>9</sub>), 29.8 (C<sub>8</sub>), 38.4 (C<sub>7</sub>), 56.1 (C<sub>5</sub>), 65.7 (C<sub>6</sub>), 106.2 (C<sub>2</sub>), 114.9 (C<sub>β</sub>), 124.4 (C<sub>1</sub>), 138.2 (C<sub>4</sub>), 145.4 (C<sub>α</sub>), 148.0 (C<sub>3</sub>), 168.9 (C<sub>γ</sub>); **IR** (FTIR): 3407, 2928, 2858, 1699, 1631, 1598, 1511, 1455, 1424, 1377, 1337, 1278, 1252, 1214, 1148, 1109 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  202, 240, 332 nm; **HRMS** (*m/z*) [M+Na]<sup>+</sup> calcd for C<sub>19</sub>H<sub>28</sub>O<sub>5</sub>Na, 359.1834; found, 359.1835.

GP3 was followed with mono-*tert*-butyl malonate to obtain *tert*-butyl sinapate as a pale-yellow powder (56% yield). **mp**: 68 – 71 °C; <sup>1</sup>H NMR (300 MHz, Acetone-*d6*):  $\delta$  1.46 (s, 9H, H<sub>7</sub>), 3.85 (s, 6H, H<sub>5</sub>), 6.29 (d, 1H, J = 15.9 Hz, H<sub>β</sub>), 6.95 (s, 2H, H<sub>2</sub>), 7.46 (d, 1H, J = 15.9 Hz, H<sub>α</sub>); <sup>13</sup>C NMR (75 MHz, Acetone-*d6*):  $\delta$  28.4 (C<sub>7</sub>), 56.6 (C<sub>5</sub>), 80.1 (C<sub>6</sub>), 106.5 (C<sub>2</sub>), 118.0 (C<sub>β</sub>), 126.2 (C<sub>1</sub>), 139.1 (C<sub>4</sub>), 145.0 (C<sub>α</sub>), 148.8 (C<sub>3</sub>), 166.9 5 (C<sub>γ</sub>); **IR** (FTIR): 3388, 2970, 2933, 1706, 1631, 1598, 1511, 1463, 1424, 1367, 1333, 1308, 1248, 1222, 1133, 1096 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  202, 204, 238, 327 nm; **HRMS** (*m/z*) [M+Na]<sup>+</sup> calcd for C<sub>15</sub>H<sub>20</sub>O<sub>5</sub>Na, 303.1208; found, 303.1207.



GP3 was followed with mono-*iso*-propyl malonate to obtain *iso*-propyl sinapate as a pale-yellow oil (73% yield). Characterization data were identical to those already described<sup>9</sup>.



GP3 was followed with monogaïacol malonate to obtain **gaïacol sinapate** as a yellow-orange solid (55% yield). **mp**: 158 – 160 °C; <sup>1</sup>H NMR (300 MHz, DMSO-*d6*):  $\delta$  3.77 (s, 3H, H<sub>12</sub>), 3.82 (s, 6H, H<sub>5</sub>), 6.78 (d, 1H, *J* = 15.9 Hz, H<sub>β</sub>), 6.97 (td, 1H, *J* = 7.7, 1.5 Hz, H<sub>7</sub>), 7.14 (m, 4H, H<sub>2,8,9</sub>), 7.25 (td, 1H, *J* = 7.7, 1.5 Hz, H<sub>10</sub>), 7.73 (d, 1H, *J* = 15.9 Hz, H<sub>α</sub>), 9.08 (s, 1H, H<sub>phenol</sub>); <sup>13</sup>C NMR (75 MHz, DMSO-*d6*):  $\delta$  55.7 (C<sub>12</sub>), 56.1 (C<sub>5</sub>), 106.6 (C<sub>2</sub>), 112.8 (C<sub>8</sub>), 113.7 (C<sub>β</sub>), 120.6 (C<sub>7</sub>), 123.0 (C<sub>9</sub>), 124.3 (C<sub>1</sub>), 126.8 (C<sub>10</sub>), 138.7 (C<sub>4</sub>), 139.5 (C<sub>6</sub>), 147.3 (C<sub>α</sub>), 148.1 (C<sub>3</sub>), 151.1 (C<sub>11</sub>), 164.8 (C<sub>γ</sub>); **IR** (FTIR): 3377, 3062, 3021, 2936, 2842, 1716, 1603, 1496, 1458, 1426, 1380, 1338, 1307, 1286, 1248, 1213, 1154, 1106 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  201, 220, 242, 337 nm; **HRMS** (*m/z*) [M+Na]<sup>+</sup> calcd for C<sub>18</sub>H<sub>18</sub>O<sub>6</sub>Na, 353.1001; found, 353.1002.



**Sinapoyl ditert-butyl malate** was synthesized as a yellow oil in 5 steps following methods from Allais et al.<sup>5</sup> (33% global yield). <sup>1</sup>**H NMR** (300 MHz, DMSO-*d6*): δ 1.41 (s, 18H, H<sub>10,13</sub>), 2.79 (m, 2H, H<sub>7</sub>), 3.81 (s, 6H, H<sub>2</sub>), 5.25 (m, 1H, H<sub>6</sub>), 6.60 (d, 1H, J = 15.8 Hz, H<sub>β</sub>), 7.06 (s, 2H, H<sub>2</sub>), 7.61 (d, 1H, J = 15.8 Hz, H<sub>α</sub>), 9.04 (s, 1H, H<sub>phenol</sub>); <sup>13</sup>**C NMR** (75 MHz, DMSO-*d6*) δ 27.5 (C<sub>10</sub>), 27.7 (C<sub>13</sub>), 37.0 (C<sub>7</sub>), 68.7 (C<sub>6</sub>), 80.9 (C<sub>9</sub>), 81.9 (C<sub>12</sub>), 106.4 (C<sub>2</sub>), 113.7 (C<sub>β</sub>), 124.2 (C<sub>1</sub>), 138.6 (C<sub>4</sub>), 146.7 (C<sub>α</sub>), 148.1 (C<sub>3</sub>), 165.8 (C<sub>γ</sub>), 167.7 (C<sub>8</sub>), 168.2 (C<sub>11</sub>); **IR** (FTIR): 3421, 2976, 2935, 1711, 1631, 1599, 1512, 1456, 1367, 1218, 1138, 1109; **UV/Vis** (Ethanol):  $\lambda_{max}$  242, 334 nm; **HRMS** (*m/z*) [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>32</sub>O<sub>9</sub>Na, 475.1944; found, 475.1950.

3.3. Sinapate esters  $\beta$ - $\beta$ ' dimers



Dimerization of ethyl sinapate led to **ethyl sinapate**  $\beta$ - $\beta$ ' **dehydrodimer (8)** as a yellow powder (62% non-optimized yield / 89% optimized yield). **mp**: 98 – 101 °C; <sup>1</sup>H NMR (300 MHz, Acetone-*d6*):  $\delta$  1.12 (t, 6H, *J* = 7.1 Hz, H<sub>7</sub>), 3.76 (s, 12H, H<sub>5</sub>), 4.14 (q, 4H, *J* = 7.0 Hz, H<sub>6</sub>), 6.96 (s, 4H, H<sub>2</sub>), 7.82 (s, 2H, H<sub>a</sub>); <sup>13</sup>C NMR (75 MHz, Acetone-*d6*):  $\delta$  14.6 (C<sub>7</sub>), 56.6 (C<sub>5</sub>), 61.3 (C<sub>6</sub>), 108.8 (C<sub>2</sub>), 126.2 (C<sub>β</sub>), 126.6 (C<sub>1</sub>), 139.0 (C<sub>4</sub>), 142.7 (C<sub>α</sub>), 148.6 (C<sub>3</sub>), 167.6 (C<sub>γ</sub>); **IR** (FTIR): 3525, 3263, 2956, 1693, 1580, 1510, 1452, 1329, 1212, 1152, 1102, 1028 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  203, 243, 331 nm; **HRMS** (*m/z*) [M+Na]<sup>+</sup> calcd for C<sub>26</sub>H<sub>30</sub>O<sub>10</sub>Na, 525.1737; found, 525.1740.



Dimerization of heptyl sinapate led to **heptyl sinapate**  $\beta$ - $\beta$ ' **dehydrodimer (9)** as a yellow-brown oil (64% non-optimized yield / 90% optimized yield). <sup>1</sup>H NMR (300 MHz, DMSO-*d6*):  $\delta$  0.82 (t, 6H, J = 6.9 Hz, H<sub>12</sub>), 1.16 (m, 16H, H<sub>8,9,10,11</sub>), 1.42 (m, 4H, H<sub>7</sub>), 3.66 (s, 12H, H<sub>5</sub>), 3.98 (m, 2H, H<sub>6</sub>), 4.10 (m, 2H, H<sub>6</sub>), 6.93 (s, 4H, H<sub>2</sub>), 7.78 (s, 2H, H<sub>α</sub>), 9.04 (s, 2H, H<sub>phenol</sub>); <sup>13</sup>C NMR (75 MHz, DMSO-*d6*):  $\delta$  13.9 (C<sub>12</sub>), 22.0 (C<sub>11</sub>), 25.3 (C<sub>10</sub>), 28.2 (C<sub>9</sub>), 28.3 (C<sub>7</sub>), 31.2 (C<sub>8</sub>), 55.8 (C<sub>5</sub>), 64.5 (C<sub>6</sub>), 107.8 (C<sub>2</sub>), 124.0 (C<sub>β</sub>), 124.6 (C<sub>1</sub>), 138.0 (C<sub>4</sub>), 141.6 (C<sub>α</sub>), 147.7 (C<sub>3</sub>), 166.7 (C<sub>γ</sub>); **IR** (FTIR): 3464, 3168, 2924, 1707, 1582, 1513, 1453, 1329, 1214, 1107 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  201, 244, 333 nm; **HRMS** (*m/z*) [M+H]<sup>+</sup> calcd for C<sub>36</sub>H<sub>51</sub>O<sub>10</sub>, 643.3482; found, 643.3473.



Dimerization of 2-ethylhexyl sinapate led to **2-ethylhexyl sinapate**  $\beta$ - $\beta'$  **dehydrodimer (10)** as a yellow-brown oil (55% non-optimized yield / 88% optimized yield). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.77 (m, 12H, H<sub>11,13</sub>), 1.15 (m, 16H, H<sub>8,9,10,12</sub>), 1.42 (m, 2H, H<sub>7</sub>), 3.79 (s, 12H, H<sub>5</sub>), 3.95 (m, 2H, H<sub>6</sub>), 4.03 (m, 2H, H<sub>6</sub>), 5.71 (s, 2H, H<sub>phenol</sub>), 6.84 (s, 4H, H<sub>2</sub>), 7.81 (s, 2H, H<sub> $\alpha$ </sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  11.0 (C<sub>11</sub>), 14.2 (C<sub>13</sub>), 23.0 (C<sub>10</sub>), 23.8 (C<sub>12</sub>), 29.0 (C<sub>9</sub>), 30.4 (C<sub>8</sub>), 38.9 (C<sub>7</sub>), 56.30 (C<sub>5</sub>), 67.3 (C<sub>6</sub>), 107.1 (C<sub>2</sub>), 125.5 (C<sub> $\beta$ </sub>), 126.3 (C<sub>1</sub>), 136.7 (C<sub>4</sub>), 142.1 (C<sub> $\alpha$ </sub>), 147.0 (C<sub>3</sub>), 167.6 (C<sub> $\gamma$ </sub>); **IR** (FTIR): 3407, 2927, 1698, 1588, 1510, 1454, 1329, 1213, 1152, 1104 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  202, 244, 333 nm; **HRMS** (*m/z*) [M+H]<sup>+</sup> calcd for C<sub>38</sub>H<sub>55</sub>O<sub>10</sub>, 671.3795; found, 671.3800.



Dimerization of *tert*-butyl sinapate led to *tert*-butyl sinapate  $\beta$ - $\beta$ ' dehydrodimer (11) as a yellow powder (58% non-optimized yield / 89% optimized yield). mp: 75 – 77 °C; <sup>1</sup>H NMR (300 MHz, Acetone-d6):  $\delta$  1.36 (s, 18H, H<sub>7</sub>), 3.77 (s, 12H, H<sub>5</sub>), 6.92 (s, 4H, H<sub>2</sub>), 7.67 (s, 2H, H<sub>α</sub>); <sup>13</sup>C NMR (75 MHz, Acetone-d6):  $\delta$  28.0 (C<sub>7</sub>), 56.2 (C<sub>5</sub>), 80.4 (C<sub>6</sub>), 107.9 (C<sub>2</sub>), 108.3 (C<sub>2</sub>), 126.8 (C<sub>β</sub>), 128.1 (C<sub>1</sub>), 138.1 (C<sub>4</sub>), 141.3 (C<sub>α</sub>), 148.3 (C<sub>3</sub>), 166.9 (C<sub>γ</sub>); **IR** (FTIR): 3394, 2933, 1689, 1588, 1510, 1452, 1331, 1245, 1145, 1105 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  204, 244, 328 nm; **HRMS** (m/z) [M+Na]<sup>+</sup> calcd for C<sub>30</sub>H<sub>38</sub>O<sub>10</sub>Na, 581.2363; found, 581.2358.



Dimerization of *iso*-butyl sinapate led to *iso*-butyl sinapate  $\beta$ - $\beta'$  dehydrodimer (12) as a yellow powder (58% non-optimized yield / 91% optimized yield). mp: 48 – 51 °C; <sup>1</sup>H NMR (300 MHz, Acetone-d6):  $\delta$  1.04 (d, 2H, *J* = 6.2 Hz, H<sub>7</sub>), 1.18 (d, 2H, *J* = 6.2 Hz, H<sub>7</sub>), 3.76 (s, 12H, H<sub>5</sub>), 4.98 (sept, 2H, *J* = 6.3 Hz, H<sub>6</sub>), 6.94 (s, 4H, H<sub>2</sub>), 7.78 (s, 2H, H<sub>a</sub>); <sup>13</sup>C NMR (75 MHz, Acetone-d6):  $\delta$  21.9 (C<sub>7</sub>), 22.1 (C<sub>7</sub>), 56.6 (C<sub>5</sub>), 68.6 (C<sub>6</sub>), 108.6 (C<sub>2</sub>), 126.8 (C<sub>β</sub>), 126.9 (C<sub>1</sub>), 138.8 (C<sub>4</sub>), 142.4 (C<sub>a</sub>), 148.6 (C<sub>3</sub>), 167.2 (C<sub>γ</sub>); **IR** (FTIR): 3384, 2935, 1688, 1587, 1509, 1451, 1370, 1325, 1214, 1154, 1092 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  201, 244, 333 nm; **HRMS** (*m/z*) [M+Na]<sup>+</sup> calcd for C<sub>28</sub>H<sub>34</sub>O<sub>10</sub>Na, 553.2050; found, 553.2049.



Dimerization of gaïacol sinapate led to **gaïacol sinapate**  $\beta$ - $\beta'$  **dehydrodimer (13)** as a yellow powder (42% non-optimized yield / 87% optimized yield). **mp**: 128 – 131 °C; <sup>1</sup>H NMR (300 MHz, DMSO-*d6*):  $\delta$  3.58 (s, 6H, H<sub>12</sub>), 3.72 (s, 12H, H<sub>5</sub>), 6.87 (dd, 2H, *J* = 7.9, 1.7 Hz, H<sub>7</sub>), 6.95 (td, 2H, *J* = 7.6, 1.4 Hz, H<sub>8</sub>), 7.11 (dd, 2H, *J* = 7.9, 1.7 Hz, H<sub>10</sub>), 7.15 (s, 4H, H<sub>2</sub>), 7.23 (m, 2H, H<sub>9</sub>), 8.04 (s, 2H, H<sub>α</sub>), 9.20 (s, 2H, H<sub>phenol</sub>); <sup>13</sup>C NMR (75 MHz, DMSO-*d6*):  $\delta$  55.6 (C<sub>12</sub>), 55.9 (C<sub>5</sub>), 108.3 (C<sub>2</sub>), 113.1 (C<sub>10</sub>), 120.7 (C<sub>8</sub>), 122.5 (C<sub>7</sub>), 122.6 (C<sub>β</sub>), 124.4 (C<sub>1</sub>), 127.0 (C<sub>9</sub>), 138.5 (C<sub>4</sub>), 139.6 (C<sub>6</sub>), 143.9 (C<sub>α</sub>), 147.7 (C<sub>3</sub>), 151.1 (C<sub>11</sub>), 164.9 (C<sub>γ</sub>); **IR** (FTIR): 3398, 2935, 1712, 1585, 1498, 1453, 1329, 1211, 1148, 1105, 1021 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  202, 246, 338 nm; **HRMS** (*m*/*z*) [M+Na]<sup>+</sup> calcd for C<sub>36</sub>H<sub>34</sub>O<sub>12</sub>Na, 681.1948; found, 681.1953.



Dimerization of sinapoyl di*tert*-butyl malate led to **sinapoyl di***tert***-butyl malate \beta-\beta' dehydrodimer (14)** as a yellow powder (42% non-optimized yield / 88% optimized yield). **mp**: 72 – 74 °C; <sup>1</sup>H NMR (300 MHz, DMSO-*d6*):  $\delta$  1.33 (m, 18H, H<sub>10</sub>), 1.37 (m, 18H, H<sub>13</sub>), 2.74 (m, 4H, H<sub>7</sub>), 3.66 (s, 12H, H<sub>5</sub>), 5.19 (m, 2H, H<sub>6</sub>), 6.88 (m, 4H, H<sub>2</sub>), 7.77 (s, 2H, H<sub>α</sub>), 9.05 's, 2H, H<sub>phenol</sub>); <sup>13</sup>C NMR (75 MHz, DMSO-*d6*):  $\delta$  27.5 (C<sub>10,13</sub>), 36.8 (C<sub>7</sub>), 55.8 (C<sub>5</sub>), 69.2 (C<sub>6</sub>), 80.7 (C<sub>9</sub>), 81.7 (C<sub>12</sub>), 108.0 (C<sub>2</sub>), 122.3 (C<sub>β</sub>), 124.1 (C<sub>1</sub>), 138.2 (C<sub>4</sub>), 142.6 (C<sub>α</sub>), 147.6 (C<sub>3</sub>), 165.5 (C<sub>γ</sub>), 167.4 (C<sub>11</sub>), 168.0 (C<sub>8</sub>); **IR** (FTIR): 3421, 2975, 1709, 1590, 1510, 1454, 1366, 1212, 1143, 1101 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  204, 243, 329 nm; **HRMS** (*m/z*) [M+Na]<sup>+</sup> calcd for C<sub>46</sub>H<sub>62</sub>O<sub>18</sub>Na, 925.3834; found, 925.3835.



Methylation of ethyl sinapate β-β' dehydrodimer (8) led to **methylated ethyl sinapate** β-β' dehydrodimer (15) as an orange solid (93% yield). **mp**: 130 – 132 °C; <sup>1</sup>H NMR (300 MHz, DMSO-*d6*): δ 1.10 (t, 6H, *J* = 7.1 Hz, H<sub>8</sub>), 3.77 (s, 12H, H<sub>5</sub>), 3.84 (s, 6H, H<sub>6</sub>), 4.15 (m, 4H, H<sub>7</sub>), 6.78 (s, 4H, H<sub>2</sub>), 7.83 (s, 2H, H<sub>α</sub>); <sup>13</sup>C NMR (75 MHz, DMSO-*d6*): δ 14.2 (C<sub>8</sub>), 56.1 (C<sub>5</sub>), 61.1 (C<sub>6</sub>), 61.4 (C<sub>7</sub>), 107.1 (C<sub>2</sub>), 126.9 (C<sub>β</sub>), 130.4 (C<sub>1</sub>), 139.5 (C<sub>4</sub>), 142.3 (C<sub>α</sub>), 153.2 (C<sub>3</sub>), 167.0 (C<sub>γ</sub>); **IR** (FTIR): 2936, 1695, 1573, 1500, 1459, 1415, 1333, 1230, 1115, 1029 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  202, 230, 310 nm; **HRMS** (*m/z*) [M+Na]<sup>+</sup> calcd for C<sub>28</sub>H<sub>34</sub>O<sub>10</sub>Na, 553.2050; found, 553.2051.



Acetylation of ethyl sinapate  $\beta$ - $\beta'$  dehydrodimer (8) let to acetylated ethyl sinapate  $\beta$ - $\beta'$  dehydrodimer (16) as a light-yellow solid (99% yield). **mp**: 99 – 101 °C; <sup>1</sup>H NMR (300 MHz, DMSO-*d6*):  $\delta$  1.10 (t, 6H, J = 7.1 Hz, H<sub>9</sub>), 2.31 (s, 6H, H<sub>7</sub>), 3.73 (s, 12H, H<sub>5</sub>), 4.15 (m, 4H, H<sub>8</sub>), 6.72 (s, 4H, H<sub>2</sub>), 7.81 (s, 2H, H<sub>a</sub>); <sup>13</sup>C NMR (75 MHz, DMSO-*d6*):  $\delta$  14.2 (C<sub>9</sub>), 20.6 (C<sub>7</sub>), 56.2 (C<sub>5</sub>), 61.5 (C<sub>8</sub>), 106.4 (C<sub>2</sub>), 128.0 (C<sub>β</sub>), 129.8 (C<sub>4</sub>), 133.2 (C<sub>1</sub>), 142.4 (C<sub>α</sub>), 152.2 (C<sub>3</sub>), 166.7 (C<sub>γ</sub>), 168.6 (C<sub>6</sub>); **IR** (FTIR): 2939, 1767, 1695, 1584, 1502, 1460, 1416, 1227, 1192, 1125, 1010 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  205, 222, 299 nm; **HRMS** (*m/z*) [M+Na]<sup>+</sup> calcd for C<sub>30</sub>H<sub>34</sub>O<sub>12</sub>Na, 609.1948; found, 609.1946.



Hydrogenation of ethyl sinapate β-β' dehydrodimer (8) led to **ethyl sinapate** β-β' dihydrodimer (17) as a light-yellow solid (95% yield). **mp**: 73 – 76 °C; <sup>1</sup>H **NMR** (300 MHz, DMSO-*d6*): δ 1.08 (t, 6H, *J* = 7.2 Hz, H<sub>7</sub>), 2.79 (m, 4H, H<sub>α</sub>), 2.89 (m, 2H, H<sub>β</sub>), 3.68 (s, 12H, H<sub>5</sub>), 3.96 (q, 4H, *J* = 7.2 Hz, H<sub>6</sub>), 6.34 (s, 4H, H<sub>2</sub>), 8.16 (s, 2H, H<sub>phenol</sub>); <sup>13</sup>C **NMR** (75 MHz, DMSO-*d6*): δ 14.0 (C<sub>7</sub>), 35.5 (C<sub>α</sub>), 48.6 (C<sub>β</sub>), 55.8 (C<sub>5</sub>), 59.9 (C<sub>6</sub>), 106.3 (C<sub>2</sub>), 128.4 (C<sub>1</sub>), 134.0 (C<sub>4</sub>), 147.7 (C<sub>3</sub>), 173.0 (C<sub>γ</sub>); **IR** (FTIR): 3443, 2937, 1720, 1609, 1515, 1457, 1369, 1323, 1207, 1105, 1031 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  207, 273 nm; **HRMS** (*m/z*) [M+Na]<sup>+</sup> calcd for C<sub>26</sub>H<sub>34</sub>O<sub>10</sub>Na, 529.2050; found, 529.2048.



DIBAI-H reduction of ethyl sinapate β-β' dehydrodimer (8) led to **sinapic alcohol β-β' dehydrodimer (18)** as a yellow powder (46% yield). **mp**: 84 – 86 °C; <sup>1</sup>H NMR (300 MHz, DMSO-*d6*): δ **δ**<sub>H</sub> 3.63 (s, 12H, H<sub>5</sub>), 3.92 (dd, 4H, *J* = 14.4, 3.9 Hz, H<sub>γ</sub>), 5.10 (t, 2H, *J* = 5.1 Hz, H<sub>alcohol</sub>), 6.56 (s, 2H, H<sub>α</sub>), 6.81 (s, 4H, H<sub>2</sub>), 8.38 (s, 2H, H<sub>phenol</sub>); <sup>13</sup>C NMR (75 MHz, DMSO-*d6*): δ 55.7 (C<sub>5</sub>), 63.6 (C<sub>γ</sub>), 105.3 (C<sub>2</sub>), 124.1 (C<sub>α</sub>), 127.2 (C<sub>1</sub>), 134.7 (C<sub>4</sub>), 139.0 (C<sub>β</sub>), 147.7 (C<sub>3</sub>); **IR** (FTIR): 3352, 2935, 1595, 1511, 1451, 1320, 1210, 1108, 1018 cm<sup>-1</sup>; **UV/Vis** (Ethanol):  $\lambda_{max}$  210, 274 nm; **HRMS** (*m/z*) [M+Na]<sup>+</sup> calcd for C<sub>22</sub>H<sub>26</sub>O<sub>8</sub>Na, 441.1525; found, 441.1519

# 4. Enzymatic dimerization of ethyl sinapate



**Figure S1**. HPLC chromatogram for the dimerization of ethyl sinapate with laccase from *Trametes versicolor* (Zorbax Eclipse Plus C18 (2.1 mm\*50 mm\*1.8  $\mu$ m),  $\lambda$  = 320 nm, flow rate set at 0.6 mL.min<sup>-1</sup>, oven temperature at 30 °C, and gradient applied: H<sub>2</sub>O/CH<sub>3</sub>CN from 75/25 to 70/30 in 18 min).

# 5. Optimization of the sinapate ester $\beta$ - $\beta$ ' dimerization

5.1. <u>Screening of solvents</u>



**Figure S2.** HPLC chromatograms of the dimerization of ethyl sinapate in pyridine (black), ethanol (pink), ethyl acetate (blue) and Cyrene<sup>M</sup> (green) (Zorbax Eclipse Plus C18 (2.1 mm\*50 mm\*1.8 µm),  $\lambda$  = 320 nm, flow rate set at 0.6 mL.min<sup>-1</sup>, oven temperature at 30 °C, and gradient applied: H<sub>2</sub>O/CH<sub>3</sub>CN from 75/25 to 70/30 in 18 min).

5.2. Design of experiments (D.O.E.)

The effect of the four independent variables  $X_1$  (Temperature),  $X_2$  (ratio Catalyst/Substrate),  $X_3$  (Ratio Amine/Catalyst) and  $X_4$  (Concentration) on responses  $Y_1$  (yield) and  $Y_2$  (conversion) was modelled using a polynomial response:

$$Yi = \beta 0 + \sum_{i=13} \beta kixi + \sum_{i=13} \beta kiixi^2 + \sum_{i=12} \sum_{j=i+13} \beta kijxixj$$

where  $Y_i$  represents the response *i*,  $x_i$  are the coded independent variables,  $\beta_0$  is a constant coefficient, and  $\beta_{ki}$ ,  $\beta_{kii}$ , and  $\beta_{kij}$  are the linear, quadratic, and interaction coefficients, respectively.

The variable levels X<sub>i</sub> were scaled and centered (coded) according to the equation below such that X<sub>0</sub> corresponded to the central value:

$$xi = Xi - X0\Delta Xi$$
 where  $i = 1, 2, 3, ..., k$ 

where  $x_i$  is the dimensionless value of an independent variable,  $X_i$  is the real value of an independent variable,  $X_0$  is the real value of an independent variable at the centre point, and  $\Delta X_i$  is the step change.

| Exp No | Evn Name   | Run Ordor |      | Temperature (%) | Ratio Cat/Substrate | Ratio amino/cot | Concentration (mol 1-1) | Viold (%)       | Conversion (%) |
|--------|------------|-----------|------|-----------------|---------------------|-----------------|-------------------------|-----------------|----------------|
| 1      | N1         | 2         |      |                 |                     |                 |                         | 0.01            |                |
| 2      |            | 3         | Incl | 23              | 2.01                | 1               | 0.249                   | 0.01            | 7.59           |
| 2      | INZ<br>NI2 | 14        | Incl | 70              | 2.03                | 1               | 0.247                   | 0.01            | 7.58           |
| 5      | N/4        | 15        | Inci | 25              | 10.1                | 1               | 0.249                   | 0.01            | 0.01           |
| 4      | IN4        | 17        | Inci | 70              | 10                  | 10              | 0.25                    | 0.01            | 0.01           |
| 5      |            | 1/        | Inci | 25              | 2.01                | 10              | 0.249                   | 0.01            | 0.01           |
| 7      |            | 4         | Incl | 70              | 2.01                | 10.1            | 0.240                   | 2.03            | 5.20           |
| /<br>0 | N/         | 22        | Inci | 25              | 9.95                | 10.02           | 0.231                   | 2.04            | 5.08<br>20.71  |
| 8      | IN8        | 23        | Incl | 70              | 10.2                | 10              | 0.246                   | 10.83           | 20.71          |
| 9      | N10        | 9         | Incl | 23              | 2.01                | 1.01            | 2.49                    | 0.01°           | 55.51          |
| 10     | N1U        | 10        | Incl | 70              | 2.01                | 1.02            | 2.447                   | 5.41<br>12.27   | 59.54<br>91.0E |
| 12     | NII<br>N12 | 11        | Incl | 23              | 10.1                | 1               | 2.49                    | 12.27           | 82.80          |
| 12     | N12        | 24        | Incl | 70              | 2.02                | 10              | 2.447                   | 2 00            | 03.09          |
| 13     | N15        | 5         | Incl | 23              | 2.02                | 10 07           | 2.40                    | 24.40           | 27.71          |
| 14     | N14        | 12        | Incl | 70              | 0.01                | 10.07           | 2.407                   | 25.49           | 97.00          |
| 15     | N15        | 20        | Incl | 70              | 3.31                | 0.02            | 2.52                    | 35.43           | 94.8           |
| 10     | N10        | 12        | Incl | 70              | 10.3                | 9.99            | 2.428                   | 20.23           | 59.99          |
| 18     | N12        | 26        | Incl | 70              | 6.02                | 5.0             | 1.358                   | 34.99<br>/10.78 | 98.37          |
| 10     | N10        | 20        | Incl | 17.5            | 1.00                | 5.49            | 1.338                   | 40.78           | 58.57          |
| 20     | N13        | 16        | Incl | 47.5            | 1.99                | 5.2             | 1.374                   | 60.77           | 04.55          |
| 20     | N21        | 25        | Incl | 47.5            | 5.00                | 1               | 1 368                   | 7 3 2           | 88.61          |
| 21     | N21        | 25        | Incl | 47.5            | 5.55                | 10.02           | 1 363                   | 53.20           | 79.64          |
| 22     | N22        | 22        | Incl | 47.5            | 6.06                | 5 5             | 0.248                   | 5 /1            | 11 18          |
| 24     | N24        | 6         | Incl | 47.5            | 6                   | 5.5             | 2 497                   | 49.87           | 98.69          |
| 25     | N25        | 18        | Incl | 47.5            | 5 98                | 5 51            | 1 374                   | 89.05           | 98.02          |
| 26     | N26        | 19        | Incl | 47.5            | 6.02                | 5 51            | 1 363                   | 83.3            | 95.02          |
| 27     | N27        | 2         | Incl | 47.5            | 6.03                | 5 51            | 1 363                   | 81.46           | 97.01          |
| 28     | N28        | - 28      | Incl | 70              | 2.01                | 10.1            | 0.246                   | 0.01            | 28.68          |
| 29     | N29        | 29        | Incl | 70              | 2                   | 10.07           | 2.487                   | 35.7            | 88.56          |
| 30     | N30        | 30        | Incl | 25              | 9.91                | 10.02           | 2.52                    | 61.11           | 95             |
| 31     | N31        | 31        | Incl | 25              | 6.02                | 5.5             | 1.358                   | 57.5            | 75.11          |
| 32     | N32        | 32        | Incl | 47.5            | 6.02                | 10.02           | 1.363                   | 53.02           | 60.59          |

**Table S1** | Design of experiments for the  $\beta$ - $\beta'$  dimerization of ethyl sinapate (experimental values obtained by HPLC)

<sup>a</sup> abnormal value excluded of the D.O.E for the yield optimization



### Figure S3 | Summary of fit for conversion (left) and yield (right)

| Table S2   Analysis of the variance (ANOVA) for the logit model of the conversion |                       |                |                           |                       |                    |  |  |  |
|-----------------------------------------------------------------------------------|-----------------------|----------------|---------------------------|-----------------------|--------------------|--|--|--|
| Source of<br>variation                                                            | Degrees of<br>freedom | Sum of squares | Mean square               | Standard<br>deviation | Significance       |  |  |  |
| Regression                                                                        | 11                    | 44155          | 40414                     | 63.357                | 0 <sup>a</sup>     |  |  |  |
| Residual                                                                          | 19                    | 3012           | 150.6                     | 12.272                |                    |  |  |  |
| Lack of Fit                                                                       | 12                    | 2298           | 176.8                     | 13.298                | 0.237 <sup>b</sup> |  |  |  |
| Pure error                                                                        | 7                     | 713.25         | 101.89                    | 10.094                |                    |  |  |  |
| R <sup>2</sup> /R <sup>2</sup> adj <sup>c</sup>                                   | 0.933/0.876           |                |                           |                       |                    |  |  |  |
| Q²                                                                                | 0.839                 |                |                           |                       |                    |  |  |  |
|                                                                                   | a C' - 'C'            |                | 6 · · • • · · · · · · · · |                       |                    |  |  |  |

<sup>a</sup> Significance at the 95 % level; <sup>b</sup> lack of fit; <sup>c</sup> R<sup>2</sup> adjusted for degree of freedom

| Table S3   Analysis of the variance (ANOVA) for the logit model of the yield |             |                |             |           |                    |  |  |  |
|------------------------------------------------------------------------------|-------------|----------------|-------------|-----------|--------------------|--|--|--|
| Source of                                                                    | Degrees of  | Sum of squares | Mean square | Standard  | Significance       |  |  |  |
| variation                                                                    | freedom     |                |             | deviation | Significance       |  |  |  |
| Regression                                                                   | 11          | 70.675         | 6.425       | 2.5348    | O <sup>a</sup>     |  |  |  |
| Residual                                                                     | 19          | 6.0076         | 0.3162      | 0.5623    |                    |  |  |  |
| Lack of Fit                                                                  | 12          | 3.3232         | 0.2769      | 0.5262    | 0.704 <sup>b</sup> |  |  |  |
| Pure error                                                                   | 7           | 2.6844         | 0.3839      | 0.6193    |                    |  |  |  |
| R <sup>2</sup> /R <sup>2</sup> adj <sup>c</sup>                              | 0.933/0.876 |                |             |           |                    |  |  |  |
| Q²                                                                           | 0.769       |                |             |           |                    |  |  |  |

<sup>a</sup> Significance at the 95 % level; <sup>b</sup> lack of fit; <sup>c</sup> R<sup>2</sup> adjusted for degree of freedom

# 6. Antiradical properties



**Figure S4** | Antiradical properties from the ABTS<sup>++</sup> assay: comparison of  $EC_{50}$  between sinapate esters and their  $\beta$ - $\beta'$  dimers.

## 7. Characterization Data

## 7.1. <u><sup>1</sup>H & <sup>13</sup>C NMR spectra</u>




















































































S60





















%Transmittance








%Transmittance





































## S88





S90

















## 7.4. <u>ABTS inhibition</u>









































## 8. References

- 1. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. *Free Radical Biol. Med.* 1999, **26**(9/10): 1231-1237.
- 2. Menezes J. C. J. M. D. S., Kamat S. P., Cavaleiro J. A. S., Gaspar A., Garrido J., Borges F. Synthesis and antioxidant activity of long chain alkyl hydroxycinnamates. *Eur. J. Med. Chem.* 2011, **46**(2): 773-777.
- 3. Padwal J., Lewis W., Moody C. J. Synthesis of the reported structure of crassiflorone, a naturally occurring quinone isolated from the African ebony Diospyros crassiflora, and regioisomeric pentacyclic furocoumarin naphthoquinones. *Org. Biomol. Chem.* 2011, **9**(9): 3484-3493.
- 4. Jaufurally A. S., Teixeira A. R. S., Hollande L., Allais F., Ducrot P.-H. Optimization of the laccase-catalyzed synthesis of (±)syringaresinol and study of its thermal and antiradical activities. *ChemistrySelect* 2016, **1**(16): 5165-5171.
- 5. Allais F., Martinet S., Ducrot P.-H. Straightforward total synthesis of 2-O-feruloyl-L-malate, 2-O-sinapoyl-L-malate and 2-O-5hydroxyferuloyl-L-malate. *Synthesis* 2009(21): 3571-3578.
- 6. Kanemitsu T., Furukoshi S., Miyazaki M., Nagata K., Itoh T. Application of asymmetric alkylation of malonic diester with phasetransfer catalysis: synthesis of LFA-1 antagonist BIRT-377. *Tetrahedron: Asymmetry* 2015, **26**(4): 214-218.
- 7. Page P. C. B., Moore J. P. G., Mansfield I., McKenzie M. J., Bowler W. B., Gallagher J. A. Synthesis of bone-targeted oestrogenic compounds for the inhibition of bone resorption. *Tetrahedron* 2001, **57**(9): 1837-1847.
- Padilha G., Birmann P. T., Domingues M., Kaufman T. S., Savegnago L., Silveira C. C. Convenient Michael addition/β-elimination approach to the synthesis of 4-benzyl- and 4-aryl-selenyl coumarins using diselenides as selenium sources. *Tetrahedron Lett.* 2017, **58**(10): 985-990.
- 9. Hayat S., Atta ur R., Choudhary M. I., Khan K. M., Abbaskhan A. Two new cinnamic acid esters from marine brown alga Spatoglossum variabile. *Chem. Pharm. Bull.* 2002, **50**(9): 1297-1299.