Electronic Supplementary Information

One-step electrodeposition of $Ni_xFe_{3-x}O_4/Ni$ hybrid nanosheet arrays as highly active and robust electrocatalysts for oxygen evolution

Dongjie Li,^a Suqin Liu,^{ab} Guanying Ye,^a Weiwei Zhu,^a Kuangmin Zhao,^a Meng Luo,^a and Zhen He^{*ab}

^aCollege of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
^bHunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan 410083, P. R. China

*Corresponding author. E-mail address: zhenhe@csu.edu.cn

This file includes:

Fig. S1 to S13

Table S1 to S4

1. Potential-time (*E*-t) transient for the electrodeposition of Ni_xFe_{3-x}O₄ and Ni_xFe_{3-x}O₄/Ni NSAs

Fig. S1 *E*-t curves of electrodeposition of $Ni_xFe_{3-x}O_4$ and $Ni_xFe_{3-x}O_4/Ni$ NSAs on the Au substrate at current densities of -1 and -6 mA cm⁻² at 80 °C by passing 1 C cm⁻² charge in the deposition solution containing 60 mM Ni²⁺, 25 mM Fe³⁺, 26.7 mM triethanolamine (TEA), 90 mM triethylenetetramine (TETRA), 0.1 M NH₄NO₃, and 2 M NaOH.

2. XRD study of the samples electrodeposited at different current densities

Fig. S2 XRD patterns of the samples electrodeposited at -0.5, -3.5, -8.0, and -10.0 mA cm⁻².

3. EDS, ICP, and XPS analysis on the Ni:Fe ratios in $Ni_xFe_{3-x}O_4$ and $Ni_xFe_{3-x}O_4/Ni$ hybrid NSAs

Table S1 The atomic Ni:Fe ratios measured by EDS, ICP, and XPS in $Ni_xFe_{3-x}O_4$ and $Ni_xFe_{3-x}O_4/Ni$ hybrid NSAs electrodeposited at -1 and -6 mA cm⁻².

Deposition current density	Ni:Fe ratio	Ni:Fe ratio	Ni:Fe ratio
$(\mathrm{mA\ cm}^{-2})$	(by EDS)	(by ICP)	(by XPS)
-1	0.24	0.22	0.32
-6	0.42	0.46	0.44

4. SEM and EDS analysis of the Ni_xFe_{3-x}O₄/Ni electrodeposited at -10 mA cm⁻²

Fig. S3 SEM images of the Ni_xFe_{3-x}O₄/Ni electrodeposited at -10 mA cm⁻². The Ni:Fe ratios measured by EDS in the nanosheets and surface bulk structures are 0.5 and 0.21, respectively.

5. The influence of the additives on the OER activities of the Ni_xFe_{3-x}O₄/Ni hybrid NSAs

Fig. S4 (a) The LSV curves at a scan rate of 1 mV s⁻¹ in 1.0 M KOH solution and (b) the corresponding Tafel plots on the Ni_xFe_{3-x}O₄/Ni samples electrodeposited with different additives at -6 mA cm⁻². (a) The LSV curves at a scan rate of 1 mV s⁻¹ in 1.0 M KOH solution and (b) the corresponding Tafel plots on the Ni_xFe_{3-x}O₄/Ni samples electrodeposited with different concentrations of NH₄NO₃ (as the additive) at -6 mA cm⁻².

6. SEM images and EDS characterizations of the two parts of the Ni_xFe_{3-x}O₄/Ni hybrid NSA

Fig. S5 SEM images of the (a) bottom dense layer and (b) upper nanosheet layer of the $Ni_xFe_{3-x}O_4/Ni$ hybrid NSA electrodeposited at -6 mA cm⁻² on Au. The upper nanosheet layer was peeled off from the bottom dense layer by using duct tape.

Table S2 The EDS measured overall Ni:Fe atomic ratio in the Ni_xFe_{3-x}O₄/Ni hybrid NSA electrodeposited at -6 mA cm⁻² and the Ni:Fe atomic ratios in the upper and bottom layer of this Ni_xFe_{3-x}O₄/Ni hybrid NSA, respectively.

Sample	Ni:Fe ratio
Ni _x Fe _{3-x} O ₄ /Ni (overall)	0.42
bottom dense layer	0.98
upper nanosheet layer	0.40

7. LSV study on the electrodeposition of Ni_xFe_{3-x}O₄/Ni hybrid NSAs

Fig. S6. LSV voltammograms on the bare Au substrate (solid curves) and the Au substrate covered with the dense layer of $Ni_xFe_{3-x}O_4/Ni$ (after 40-s electrodeposition at -6 mA cm⁻²) in different solutions.

8. Examples of the steady-state Tafel analysis of the electrodeposited $Ni_xFe_{3-x}O_4$ and $Ni_xFe_{3-x}O_4/Ni$ NSAs

Fig. S7 The multi-current step measurements on the $Ni_xFe_{3-x}O_4$ and $Ni_xFe_{3-x}O_4/Ni$ NSAs electrodeposited at -1.0 and -6.0 mA cm⁻². The applied current densities in the test are 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 20, 50, 100 mA cm⁻². The time durations for the current steps (from low current density to high current density) are 1800, 1800, 600, 300, 300, 300, 300, 100, 100, and 100 s. The steady-state potential at each current step obtained on these plots is used for the steady-state Tafel plot in Fig. 5b.

9. Determination of the double-layer capacitance and electrochemically active surface area of the Ni_xFe_{3-x}O₄ and Ni_xFe_{3-x}O₄/Ni NSAs

The double-layer capacitance (C_{dl}) and electrochemically active surface area (ECSA) of the electrodeposited Ni_xFe_{3-x}O₄ and Ni_xFe_{3-x}O₄/Ni NSAs were estimated from the CV measurements. The CVs (Fig. S8a~g) of the Ni_xFe_{3-x}O₄ and Ni_xFe_{3-x}O₄/Ni NSA samples at different scan rates of 3, 4, 5, 6, 7, 8, 9, and 10 mV s⁻¹ in 1 M KOH at room-temperature were performed in a potential window of OCP \pm 20 mV. The *C*_{dl} is obtained from the slope of the linear fits to the current density (at open circuit potential (OCP)) vs scan rate plot ((Fig. S8h). The ECSA of each film is calculated according to the Eq. 1

$$\text{ECSA} = \frac{C_{dl}}{C_s} \times A \qquad (1)$$

where $C_{\rm s}$ (0.040 mF cm⁻²) is the double-layer capacitance of Ni_xFe_{3-x}O₄ in 1 M KOH and A is

the geometric area of the fabricated Ni_xFe_{3-x}O₄ and Ni_xFe_{3-x}O₄/Ni NSA electrodes.¹

Fig. S8 CV curves at the scan rate of 3 (purple curve), 4 (violet curve), 5 (navy curve), 6 (olive curve), 7 (magenta curve), 8 (blue curve), 9 (red curve), and 10 (black curve) mV s⁻¹ on (a) Au and the $Ni_xFe_{3-x}O_4$ and $Ni_xFe_{3-x}O_4$ /Ni NSAs electrodeposited at (b) -0.5, (c) -1, (d) -3.5, (e) -6, (f) -8, and (g) -10 mA cm⁻². (h) Plots of the current density at 0 V vs. OCP as a function of scan rate.

10. Summary of the electrochemcial data of Ni_xFe_{3-x}O₄ and Ni_xFe_{3-x}O₄/Ni NSAs

 Table S3 Summary of the main electrochemical data derived from the corresponding Measurements

 in Fig. 5.

Deposition auront dongity	Electrochemical data						
$(mA \ cm^{-2})$	η_{10}	η_{100}	Ts	C _{dl}	R _{ct}		
(IIIA CIII)	(mV)	(mV)	(mV dec ⁻¹)	$(\mathbf{mF} \ \mathbf{cm}^{-2})$	(Ω)		
-0.5	346	440	57	0.700	45.48		
-1	316	387	55	1.035	42.25		
-3.5	302	364	37	0.435	30.14		
-6	263	312	42	0.229	7.96		
-8	280	326	51	0.194	10.99		
-10	295	350	59	0.145	14.01		
bare Au substrate	-	-	59	0.121	3099.93		

 η_{10} and η_{100} : overpotential obtained from the LSVs (in Fig. 5) at the current densities of 10 and 100 mA cm⁻².

Ts: Tafel slope.

C_{dl}: double-layer capacitance

Rct : charge-transfer resistance

11. The stability test on $Ni_xFe_{3-x}O_4/Ni$ NSA conducted at -10 mA cm⁻²

Fig. S9 Long-term stability test on the $Ni_xFe_{3-x}O_4/Ni$ hybrid NSA (electrodeposited at -6 mA cm⁻²) at 10 mA cm⁻² in 1 M KOH at room temperature for 10 days.

12. XPS study on the Ni_xFe_{3-x}O₄/Ni hybrid NSA before and after the stability test

Fig. S10 (a) Ni 2p, (b) Fe 2p, and (c) O 1s XPS spectra of the $Ni_xFe_{3-x}O_4/Ni$ hybrid NSA electrodeposited -6 mA cm⁻² before and after the 240-h stability test at 10 mA cm⁻² in 1 M KOH at room temperature.

13. Comparison of the OER activity of the Ni_xFe_{3-x}O₄/Ni hybrid NSAs electrodeposited on different planar substrates

The apparent catalytic performance of the prepared $Ni_xFe_{3-x}O_4/Ni$ electrodes on different substrates (i.e., Au, GC, and SS) is similar (Fig. S11a). The LSV on SS (in the potential range of 1.43 to 1.53 V vs. RHE) slightly deviates from the LSV on the Au substrate, probably due to the slightly different electrochemically active surface area (which arises from the slightly different surface morphology) of the $Ni_xFe_{3-x}O_4/Ni$ NSA deposited on SS compared to that on Au. This difference might also cause the slight variation of the Tafel slope on SS compared to that on Au (Fig. S11b). However, it is worth mentioning that the Tafel slopes on Au and SS are both consistent with the same OER mechanism involving one electrochemical preequilibrium step preceding a rate-limiting chemical step.²

Fig. S11 (a) iR-corrected LSVs (at 1 mV s⁻¹ in 1 M KOH) and (b) the corresponding steady-state Tafel plots of the $Ni_xFe_{3-x}O_4/Ni$ hybrid NSAs electrodeposited at -6 mA cm⁻² on the planar Au, GC, and SS substrates.

14. SEM and electrochemical characterizations of Ni_xFe_{3-x}O₄/Ni NSAs

Fig. S12 SEM images of Ni_xFe_{3-x}O₄/Ni hybrid NSAs electrodeposited at (a) -1.06, (b) -1.07, and (c) -1.08 V for 200s on NF. (d) SEM image of the Ni_xFe_{3-x}O₄/Ni hybrid NSA deposited on NF at -1.07 V for 200s after the OER stability test at different current densities of 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 mA cm⁻² for totally 220 h.

Fig. S13 Electrochemical properties of the Ni_xFe_{3-x}O₄/Ni hybrid NSAs electrodeposited at -1.06, -1.07, and -1.08 V on NF and -6 mA cm⁻² on Au: (a) steady-state Tafel plots, (b) double-layer capacitance (C_{dl}), (c) ECSA-normalized LSV curves, and (d) Nyquist plots.

15. Comparison of the OER catalytic performance of the NiFe-based oxides

Table S4 Comparison between the OER performance of the $Ni_xFe_{3-x}O_4/Ni$ hybrid NSA electrodeposited at -6 mA cm⁻² on NF and the reported NiFe-based oxides OER catalysts in 1 M KOH aqueous solution.

Sample	η_{10}	Ts	Synthesis Methods	Time	Stability	Ref.
NiFe ₂ O ₄ nano-rods/GCE ※	342	44	thermal decomposition	15 h	2 h @20mA cm ⁻²	3
FeNi/NiFe ₂ O ₄ @NC/GCE $\%$ \Leftrightarrow	316	60	metal-organic framework derivation	86 h	1.5 h @10 mA cm ⁻²	4
NiO/NiFe₂O₄/GCE ※ ☆	302	42	hydrothermal synthesis method and thermal decomposition	15 h	2 h @20 mA cm ⁻²	5
NiFe ₂ O ₄ /VACNT/NF $\%$	240	70	supercritical carbon dioxide (SCeCO ₂)technique	8 h	8 h @10 mA cm ⁻²	6
2D NiFe ₂ O ₄ /GCE X	460	193	hydrothermal synthesis method	10 h	N/A	7
1D NiFe₂O₄/NF ※☆	433	134	solution blow spinning	40 h	5.5 h @10 mA cm ⁻²	8
Ni ₃₂ Fe oxides/NF ※	291	58	hard templating method	16 h	50 h @10 mA cm ⁻²	9
NiFe ₂ O ₄ /NF ×	343	185	eletrodeposition and annealing	2.5 h	N/A	10
Ni-Fe-O/GCE※	244	39	alloying/dealloying	3.5 h	60 h	11

					$@10 \text{ mA cm}^{-2}$	
Ni _x Fe _{3-x} O ₄ /Ni/GCE ※ ☆	225	44	solvothermal	24 h	10 h @10 mA cm ⁻²	12
NiFeO _x @CuO NWs/Cu ※	300	40	electrodeposition	3.5 h	15 h @10 mA cm ⁻²	13
NiFe ₂ O ₄ quantum dots /GCE $$ \times	262	37	template method	78 h	100 h @10 mA cm ⁻²	14
Ni _x Fe _{3-x} O ₄ /Ni/Au	263	42	electrodeposition	167 s	240 h @10 mA cm ⁻²	this work
Ni _x Fe _{3-x} O ₄ /Ni/NF	212	46	electrodeposition	200 s	250 h @10~500 mA cm ⁻²	this work

: Synthesis involves high temperature (>100 °C) processes.

 \Rightarrow : Synthesis uses organic solvents (instead of DI water).

 η_{10} : overpotential at a current density of 10 mA cm⁻² during OER.

Ts: Tafel slope (mV dec^{-1}).

Time: the time of the synthesis.

References

- 1. C. C. L. McCrory, S. Jung, I. M. Ferrer, S. Chatman, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2014, **137**, 4347.
- 2 J. B. Gerken, J. G. McAlpin, J. Y. C. Chen, M. L. Rigsby, W. H. Casey, R. D. Britt, S. S. Stahl, J. Am Chem. Soc. 2011, 133, 14431.
- 3. G. Liu, K. Wang, X. Gao, D. He and J. Li, *Electrochim. Acta*, 2016, **211**, 871-878.
- 4. Y. Ma, X. Dai, M. Liu, J. Yong, H. Qiao, A. Jin, Z. Li, X. Huang, H. Wang and X. Zhang, ACS Appl. Mater. Interfaces, 2016, 8, 34396.
- 5. G. Liu, X. Gao, K. Wang, D. He and J. Li, *Int. J. Hydrogen Energ.*, 2016, **41**, 17976-17986.
- 6. Y. Xu, Y. Yan, T. He, K. Zhan, J. Yang, B. Zhao, K. Qi and B. Y. Xia, *Carbon*, 2019, **145**, 201-208.
- 7. C. Mahala, M. D. Sharma and M. Basu, *Electrochim. Acta*, 2018, **273**, 462-473.
- V. D. Silva, L. S. Ferreira, T. A. Simoes, E. S. Medeiros and D. A. Macedo, J. Colloid Interf. Sci., 2019, 540, 59-65.
- 9. M. Yu, G. Moon, E. Bill and H. Tüys üz, ACS Appl. Energy Mater., 2019, 2, 1199-1209.
- 10. J. Liu, D. Zhu, T. Ling, A. Vasileff and S.-Z. Qiao, *Nano Energy*, 2017, 40, 264-273.
- 11. C. Dong, T. Kou, G. Hui, Z. Peng and Z. Zhang, Adv. Energy Mater., 2018, 8, 1701347
- J. Huang, J. Han, R. Wang, Y. Zhang, X. Wang, X. Zhang, Z. Zhang, Y. Zhang, B. Song and S. Jin, ACS Energy Lett., 2018, 3, 1698-1707.
- 13. S. Czioska, J. Wang, S. Zuo, X. Teng and Z. Chen, *ChemCatChem*, 2018, **10**, 1005-1011.
- H. Yang, Y. Liu, S. Luo, Z. Zhao, X. Wang, Y. Luo, Z. Wang, J. Jin and J. Ma, ACS Catal., 2017, 7, 5557-5567.