Haber-Independent, Diversity-Oriented

Synthesis of Nitrogen Compounds from Biorenewable Chitin

Thuy Trang Pham, Xi Chen, Tilo Söhnel, Ning Yan and Jonathan Sperry*

j.sperry@auckland.ac.nz

Electronic Supplementary Information

Experimental section	3
¹ H NMR spectrum of compound <i>trans</i> -3	
¹³ C NMR spectrum of compound <i>trans</i> -3	19
¹ H NMR spectrum of compound <i>cis</i> -3	20
¹³ C NMR spectrum of compound <i>cis</i> -3	21
¹ H NMR spectrum of compound 4	22
¹³ C NMR spectrum of compound 4	
¹ H NMR spectrum of compound 5	24
¹³ C NMR spectrum of compound 5	25
¹ H NMR spectrum of compound 6	
¹³ C NMR spectrum of compound 6	
¹ H NMR spectrum of compound 7	
¹³ C NMR spectrum of compound 7	
NOESY spectrum of compound 7	
¹ H NMR spectrum of compound 8	
¹³ C NMR spectrum of compound 8	
¹ H NMR spectrum of compound 9	
¹³ C NMR spectrum of compound 9	34
¹ H NMR spectrum of compound 10	35
¹³ C NMR spectrum of compound 10	
¹ H NMR spectrum of compound 11	
¹³ C NMR spectrum of compound 11	
¹ H NMR spectrum of compound 12	
¹³ C NMR spectrum of compound 12	40

¹ H NMR spectrum of compound 13	41
¹³ C NMR spectrum of compound 13	42
NOESY spectrum of compound 13	43
¹ H NMR spectrum of compound 14	44
¹³ C NMR spectrum of compound 14	45
¹ H NMR spectrum of compound 15	46
¹³ C NMR spectrum of compound 15	47
¹ H NMR spectrum of compound 16	48
¹³ C NMR spectrum of compound 16	49
¹ H NMR spectrum of compound 17	50
¹³ C NMR spectrum of compound 17	51
¹ H NMR spectrum of compound 18	52
¹³ C NMR spectrum of compound 18	53
¹ H NMR spectrum of compound 19	54
¹³ C NMR spectrum of compound 19	55
Crystal structure of compound 14	56
Table S1. X-ray diffraction data for 3, 9, 10 and 14	57

General Experimental Details

Commercially available reagents were used throughout without purification unless otherwise stated. Anhydrous solvents were used as supplied. Dichloromethane, methanol and tetrahydrofuran were dried using an LC Technology Solutions Inc. SP-1 solvent purification system under an atmosphere of dry nitrogen. All reactions were routinely carried out in ovendried glassware under a nitrogen atmosphere unless otherwise stated. Analytical thin layer chromatography was performed using silica plates and compounds were visualized at 254 and/or 360 nm ultraviolet irradiation followed by staining ethanolic vanillin solution. Melting points were recorded on an Electrothermal melting point apparatus and are uncorrected. Infrared spectra were obtained using a Perkin Elmer spectrum One Fourier Transform Infrared spectrometer as thin films between sodium chloride plates. Absorption maxima are expressed in wavenumbers (cm⁻¹). NMR spectra were recorded on either a Bruker AV300, AVIII400 or AVIIIHD500 spectrometer operating at 300, 400, 500 MHz for ¹H nuclei respectively and 75, 100, 125 MHz for ¹³C nuclei respectively. Chemical shifts are reported in parts per million (ppm) relative to the tetramethylsilane peak recorded as $\delta 0.00$ ppm in CDCl₃/TMS solvent, or the residual chloroform (δ 7.26 ppm), or DMSO (δ 2.50 ppm). The ¹³C NMR values were referenced to the residual chloroform (δ 77.1 ppm), DMSO (δ 39.5 ppm). ¹³C NMR values are reported as chemical shift δ and assignment. ¹H NMR shift values are reported as chemical shift δ , relative integral, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant (J in Hz) and assignment. Assignments are made with the aid of COSY, NOESY, HMBC and edited HSQC experiments. All experiments were conducted at 298 K. Conventional NMR tubes (5 mm diameter, Norell) using a sample volume of 500 µL were used. High resolution mass spectra were obtained by electrospray ionization in positive ion mode at a nominal accelerating voltage of 70 eV on a Bruker micrOTOF-QII mass spectrometer.

X-ray diffraction analysis of single crystals of **3**, **9**, **10** and **14** were performed on a Rigaku Oxford Diffraction XtaLAB-Synergy-S single-crystal diffractometer with a PILATUS 200K hybrid pixel array detector using Cu K α radiation (Table S1). The data were processed with the SHELX2016¹ and Olex2² software packages. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were inserted at calculated positions and refined with a riding model or without restrictions. Mercury 4.2.0³ was used to visualize the molecular structures.

(±)-*Trans-N*-(5-hydroxy-4-methyl-3-oxocyclopent-1-en-1-yl)acetamide (*trans-3*) and (±)*cis-N*-(5-hydroxy-4-methyl-3-oxocyclopent-1-en-1-yl)acetamide (*cis-3*)

A mixture of the furfuryl alcohol **2** (1.50 g, 8.87 mmol) and magnesium chloride hexahydrate (7.21 g, 35.47 mmol) in water (340 mL) was stirred at 120 °C for 24 h. After completion, the mixture was concentrated *in vacuo* until small amount of water was left (~30 mL) and extracted with ethyl acetate (3 x 100 mL), washed with brine, dried (Na₂SO₄), filtered and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel eluting with ethyl acetate to give the *title compounds trans*-**3** (479 mg, 2.83 mmol, 32%) and *cis*-**3** (120 mg, 0.709 mmol, 8%);

Trans-**3**: colourless solid; m.p. 136.9-138.1 °C; HRMS [ESI, $(M + Na)^+$] found 192.0633, [C₈H₁₁NO₃ + Na]⁺ requires 192.0631; v_{max} (neat)/cm⁻¹ 3188, 3119, 3094, 3013, 2935, 2872, 1721, 1657, 1607, 1527, 1453, 1368, 1306, 1233, 1182, 1061, 1039, 1001; δ_H (400 MHz, (CD₃)₂CO) 9.48 (1 H, br s, NH), 6.24 (1 H, s, CH), 4.82 (1 H, d, *J* 5.2, CH), 4.42 (1 H, br s, OH), 2.20 -2.16 (4 H, m, CH and Me), 1.13 (3 H, d, *J* 7.2, Me); δ_C (100 MHz, (CD₃)₂CO) 204.9 (C), 170.6 (C), 165.6 (C), 112.0 (CH), 77.5 (CH), 49.3 (CH), 24.0 (Me), 13.5 (Me).

Cis-**3**: colourless solid; m.p. 158.6-161.8 °C; HRMS [ESI, $(M + Na)^+$] found 192.0638, [C₈H₁₁NO₃ + Na]⁺ requires 192.0631; v_{max} (neat)/cm⁻¹ 3195, 3126, 3102, 3021, 2987, 2946, 2373, 2188, 1713, 1662, 1614, 1591, 1529, 1458, 1427, 1396, 1372, 1323, 1285, 1232, 1186, 1140, 1105, 1042, 1001; $\delta_{\rm H}$ (400 MHz, (CD₃)₂CO)9.54 (1 H, br s, NH), 6.26 (1 H, s, CH), 4.88 (1 H, t, *J* 6.6 Hz, CH), 4.49 (1 H, d, *J* 6.8, OH), 2.40 (1 H, pent, *J* 7.6, CH), 2.19 (3 H, s, Me), 1.04 (3 H, d, *J* 7.6, Me); δ_C (100 MHz, (CD₃)₂CO) 207.4 (C), 170.5 (C), 166.3 (C), 112.1 (CH), 71.6 (CH), 44.1 (CH), 24.0 (Me), 11.0 (Me).

(±)-Trans-3-amino-4-hydroxy-5-methylcyclopent-2-en-1-one (4)

To a solution of compound **3** (400 mg, 2.36 mmol) in methanol (10 mL) wad added triethylamine (1.34 mL, 9.46 mmol) at room temperature. The mixture was stirred at 65 °C for 3 h, concentrated *in vacuo* and the residue purified by flash column chromatography on silica gel eluting with ethyl acetate-methanol (10:1) to give the *title compound* **4** (279 mg, 2.19 mmol, 93%) as a colourless solid; m.p. 154.4-156.3 °C; HRMS [ESI, (M + H)⁺] found 128.0707, $[C_6H_9NO_2+H]^+$ requires 128.0706; v_{max} (neat)/cm⁻¹ 3298, 3134, 2981, 2968, 2860, 1674, 1644, 1623, 1534, 1416, 1371, 1332, 1313, 1236, 1198, 1089, 1066; δ_H (400 MHz, (CD₃)₂SO) 7.34 (1 H, br s, NH<u>H</u>), 5.42 (1 H, d, *J* 6.3, OH), 4.68 (1 H, s, CH), 4.05 (1 H, dd, *J* 5.4, 3.3, CH), 2.04 (1 H, dq, *J* 7.3, 3.3, CH), 1.02 (3 H, d, *J* 7.4, Me); δ_C (100 MHz, (CD₃)₂SO) 200.0 (C), 176.2 (C), 96.8 (CH), 75.9 (CH), 48.7 (CH), 14.0 (Me).

(±)-N-(4-methyl-3,5-dioxocyclopent-1-en-1-yl)acetamide (5)

To a solution of compound **3** (400 mg, 2.36 mmol) in ethyl acetate (20 mL) was added 2iodoxybenzoic acid (1.32 g, 4.73 mmol) at room temperature. The mixture was stirred at 60 $^{\circ}$ C for 24 h, then filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (7:3) to give the *title compound* **5** (360 mg, 2.15 mmol, 91%) as a colourless solid; m.p. 158.0-159.8 °C; HRMS [ESI, $(M + Na)^+$] found 190.0473, $[C_8H_9NO_3 + Na]^+$ requires 190.0475; v_{max} (neat)/cm⁻¹ 3251, 3216, 3144, 2899, 1744, 1718, 1676, 1599, 1509, 1456, 1424, 1370, 1291, 1247, 1213, 1188, 1112, 1074, 1044, 1006; δ_H (400 MHz, (CD₃)₂CO)9.48 (1 H, br s, NH), 7.22 (1 H, s, CH), 2.81 (1 H, q, *J* 7.5, CH), 2.29 (3 H, s, Me), 1.15 (3 H, d, *J* 7.8, Me); δ_C (100 MHz, (CD₃)₂CO) 202.4 (C), 201.4 (C), 171.0 (C), 151.8 (C), 124.1 (CH), 44.2 (CH), 24.0 (Me), 10.5 (Me).

4-Amino-2,2-dimethylcyclopent-4-ene-1,3-dione (6)

To a solution of compound **5** (40 mg, 0.24 mmol) in ethyl acetate (1 mL) was added iodomethane (0.044 mL, 0.72 mmol) and sodium hydroxide (19 mg, 0.48 mmol). The resulting mixture was stirred at room temperature for 5 h, then methanol (0.2 mL) was added and the mixture was stirred at 40 °C for 3 h. Water (1 mL) was added and the mixture was extracted with ethyl acetate (3 x 15 mL), washed with brine, dried (Na₂SO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate to give the *title compound* **6** (22 mg, 0.16 mmol, 66%) as a colourless solid; m.p. 154.0-155.5 °C; HRMS [ESI, (M + Na)⁺] found 162.0520, [C₇H₉NO₂ + Na]⁺ requires 162.0525; v_{max} (neat)/cm⁻¹ 3042, 3316, 3281, 3242, 3204, 2979, 1747, 1685, 1617, 1563, 1465, 1406, 1378, 1309, 1257, 1232, 1207, 1133, 1086, 1032; $\delta_{\rm H}$ (400 MHz, (CD₃)₂CO) 6.57 (2 H, br s, NH₂), 5.75 (1 H, s, CH), 1.05 (6 H, s, 2 × Me); $\delta_{\rm C}$ (100 MHz, (CD₃)₂CO) 205.6 (C), 202.6 (C), 158.5 (C), 109.6 (CH), 46.4 (C), 20.7 (2 × Me).

(7a)

 $((1R^*, 2S^*, 3S^*)$ -2-hydroxy-3-methyl-4-oxocyclopentyl)acetamide (7b)

10% Pd/C (4 mg) was added to a stirred solution of compound 3 (20 mg, 0.12 mmol) in ethyl acetate (2 mL) and the mixture was stirred under an atmosphere of hydrogen for 19 h at room temperature. The mixture was filtered through Celite, then concentrated *in vacuo*. The residue was purified by flash column chromatography eluting with ethyl acetate to give the *title* compounds 7a and 7b (10:1; inseparable) (8 mg, 0.05 mmol, 40%) as a colourless oil; HRMS $[ESI, (M + Na)^{+}]$ found 194.0792, $[C_{8}H_{13}NO_{3} + Na]^{+}$ requires 194.0788; v_{max} (neat)/cm⁻¹ 3269, 1739, 1635, 1554, 1455, 1408, 1375, 1304, 1173, 1078; δ_H (400 MHz, (CD₃)₂CO)(**7a:7b**, 10:1) 7.97 (1 H, br s, NHminor), 7.53 (1H, br s, NHmajor), 5.29 (1 H, d, J 3.0, OHmajor), 4.58 (1 H, d, J 2.9, OH_{minor}), 4.29-4.22 (1 H, m, CH_{minor}), 4.18-4.10 (1 H, m, CH_{major}), 3.73 (1 H, ddd, J 10.5, 8.4, 2.6, CH_{major}), 2.77 (1 H, ddd, J 10.9, 9.0, 2.0, CH of CH_{2major}), 2.58 (1 H, dd, J 18.9, 7.8, CH_{minor}), 2.49-2.46 (1 H, m, CH of CH_{2minor}), 2.33 (1 H, ddd, J 8.8, 6.9, 1.8, CH_{major}), 2.28-2.20 (1 H, m, CH_{minor}), 2.14-2.08 (1 H, m, CH of CH_{2minor}), 2.11 (1 H, dd, J 18.8, 10.4, CH of CH_{2major}), 1.92 (3 H, s, Me_{major}), 1.87 (3 H, s, Me_{minor}), 1.06 (3 H, d, J 7.0, Me_{major}), 1.00 (3 H, d, J 7.3, Me_{minor}); δ_C (100 MHz, (CD₃)₂CO) 212.7 (C_{major}), 172.2 (C_{major}), 162.8 (C_{minor}), 81.5 (CH_{major}), 76.7 (CH_{minor}), 54.9 (CH_{major}), 53.2 (CH_{minor}), 52.7 (CH_{major}), 47.3 (CH_{minor}), 43.0 (CH_{2major}), 41.0 (CH_{2minor}), 22.9 (Me_{minor}), 22.8 (Me_{major}), 11.6 (Me_{major}), 8.0 (Me_{minor}), 1C_{minor} not observed.

[Major = **7a**; minor = **7b**]

(±)-*N*-(3-methyl-4-oxocyclopent-2-en-1-yl)acetamide (8)

To a solution of compound **7** (9 mg, 0.05 mmol) in ethyl acetate (0.5 mL) was added *p*toluenesulfonic acid (5 mg, 0.03 mmol) at room temperature. The mixture was stirred at 80 °C for 30 min, concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel eluting with ethyl acetate-methanol (10:1) to give the *title compound* **8** (7.5 mg, 0.05 mmol, 93%) as a colourless solid; m.p. 93.5-95.5 °C; HRMS [ESI, (M + Na)⁺] found 176.0683, [C₈H₁₁NO₂ + Na]⁺ requires 176.0682; v_{max} (neat)/cm⁻¹ 3277, 3072, 2926, 1708, 1635, 1539, 1432, 1401, 1373, 1320, 1283, 1197, 1100, 1076; δ_{H} (400 MHz, CDCl₃) 7.13-7.11 (1 H, m, CH), 6.26 (1 H, d, *J* 7.0, NH), 5.08-5.03 (1 H, m, CH), 2.83 (1 H, dd, *J* 18.8, 6.8, CH of CH₂), 2.13 (1 H, dd, *J* 18.8, 2.4, CH of CH₂), 1.95 (3 H, s, Me), 1.75 (3 H, t, *J* 1.8, Me); δ_{C} (100 MHz, CDCl₃) 206.7 (C), 170.0 (C), 155.5 (CH), 143.6 (C), 47.6 (CH), 42.1 (CH₂), 23.0 (Me), 9.9 (Me).

(±)-*cis*-*N*-(3a,7-dihydroxy-8b-methyl-1-oxo-3a,8b-dihydro-1*H*-cyclopenta[*b*]benzofuran-3-yl)acetamide (9)

To a solution of compound **5** (20 mg, 0.12 mmol) in ethanol (0.6 mL) was added *p*-benzoquinone (26 mg, 0.24 mmol) at room temperature. The mixture was stirred at 60 °C for 20 min, then concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (1:1) to give the *title compound* **9** (13 mg, 0.10

mmol, 79%) as an orange solid; m.p. >200 °C (decomp.); HRMS [ESI, (M + Na)⁺] found 298.0677, $[C_{14}H_{13}NO_5 + Na]^+$ requires 298.0686; v_{max} (neat)/cm⁻¹ 3189, 3102, 1680, 1616, 1521, 1492, 1465, 1443, 1373, 1250, 1231, 1208, 1133, 1110, 1101, 1033; δ_H (400 MHz, (CD₃)₂SO) 10.76 (1 H, s, NH), 8.99 (1 H, s, OH), 7.97 (1 H, s, OH), 6.65 (1 H, d, *J* 2.4, ArH), 6.62 (1 H, d, *J* 8.6, ArH), 6.57 (1 H, dd, *J* 8.6, 2.4, ArH), 6.38 (1 H, s, CH), 2.20 (3 H, s, Me), 1.28 (3 H, s, Me); δ_C (100 MHz, (CD₃)₂SO) 202.4 (C), 171.2 (C), 160.9 (C), 152.0 (C), 148.1 (C), 128.9 (C), 115.4 (CH), 113.4 (C), 110.5 (CH), 110.3 (CH), 109.7 (CH), 56.3 (C), 23.8 (Me), 16.0 (Me).

(±)-3-Amino-7a-methyl-7,7a-dihydro-1*H*-indene-1,5(6*H*)-dione (10)

To a solution of compound **5** (20 mg, 0.12 mmol) and methyl vinyl ketone (0.01 mL, 0.12 mmol) in ethyl acetate (1 mL) was added sodium hydroxide (10 mg, 0.24 mmol). The mixture was stirred at room temperature for 15 min, then filtered and concentrated *in vacuo*. The residue was dissolved in methanol (0.5 mL), then sodium hydroxide (10 mg, 0.24 mmol) was added, and the mixture was stirred at room temperature for 6 h. Water was added and the mixture was extracted with ethyl acetate (3 x 20 mL), washed with brine, dried (Na₂SO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate to give the *title compound* **10** (19 mg, 0.11 mmol, 89%) as an orange solid; m.p. 180 °C (decomp.); HRMS [ESI, (M + Na)⁺] found 200.0681, [C₁₀H₁₁NO₂ + Na]⁺ requires 200.0682; v_{max} (neat)/cm⁻¹ 3391, 3211, 3037, 2930, 2871, 1719, 1642, 1616, 1548, 1467, 1448, 1412, 1377, 1347, 1308, 1261, 1220, 1198, 1102, 1078; $\delta_{\rm H}$ (400 MHz, (CD₃)₂CO) 6.78 (2 H, br s, NH₂), 6.13 (1 H, s, CH), 5.15 (1 H, s, CH), 2.63 (1 H, ddd, *J* 18.9, 13.8, 5.6, CH of CH₂),

2.40 (1 H, ddt, *J* 18.4, 5.5, 1.2, CH of CH₂), 2.02 (1 H, ddd, *J* 13.0, 5.5, 1.6, CH of CH₂), 1.76 (1 H, dt, *J* 13.3, 5.4, CH of CH₂), 1.31 (3 H, s, Me); δ_C (100 MHz, (CD₃)₂CO) 202.3 (C), 198.6 (C), 165.4 (C), 162.4 (C), 117.5 (CH), 103.6 (CH), 46.0 (C), 34.7 (CH₂), 29.4 (CH₂), 22.9 (Me).

 (\pm) -2,5a-Dimethyl-6,7-dihydro-5*H*-indeno[1,2-*b*]pyridine-5,8(5a*H*)-dione (11)

A mixture of compound **10** (15 mg, 0.09 mmol), methyl vinyl ketone (0.01 mL, 0.09 mmmol), potassium carbonate (47 mg, 0.34 mmol), copper bromide (5 mg, 0.04 mg) in acetonitrile (1.5 mL) was heated at 120 °C for 24 h. The mixture was filtered, concentrated *in vacuo*, and the residue was purified by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (7:3) to give the *title compound* **11** (7 mg, 0.03 mmol, 36%) as a yellow solid; m.p. 103.1 – 106.3 °C; HRMS [ESI, (M + Na)⁺] found 250.0841, [C₁₄H₁₃NO₂ + Na]⁺ requires 250.0838; v_{max} (neat)/cm⁻¹ 2962, 2931, 1728, 1659, 1638, 1575, 1448, 1415, 1396, 1311, 1202, 1135, 1101; $\delta_{\rm H}$ (400 MHz, (CD₃)₂CO) 8.06 (1 H, d, *J* 8.0, ArH), 7.59 (1 H, d, *J* 8.0, ArH), 6.46 (1 H, s, CH), 2.85-2.75 (1 H, m, CH of CH₂), 2.70 (3 H, s, Me), 2.54-2.48 (1 H, m, CH of CH₂), 2.26 (1 H, ddd, *J* 13.2, 5.6, 1.8, CH of CH₂), 2.11-2.03 (1 H, m, CH of CH₂), 1.45 (3 H, s, Me); $\delta_{\rm C}$ (100 MHz, (CD₃)₂CO) 202.8 (C), 198.2 (C), 168.6 (C), 163.4 (C), 161.9 (C), 133.3 (CH), 128.8 (C), 127.7 (CH), 119.6 (CH), 49.0 (C), 34.5 (CH₂), 28.7 (CH₂), 25.5 (Me), 22.5 (Me).

(±)-Methyl 3-(3-acetamido-1-methyl-2,5-dioxocyclopent-3-en-1-yl)propanoate (12)

A mixture of compound **5** (20 mg, 0.12 mmol) and methyl acrylate (0.06 mL, 0.60 mmol) in triethylamine (0.3 mL) was stirred at 80 °C for 1 hour. After completion, the mixture was purified by flash chromatography on silica gel eluting with ethyl acetate to give the *title compound* **12** (25 mg, 0.10 mmol, 82%) as a light yellow oil; HRMS [ESI, (M + Na)⁺] found 276.0834, [C₁₂H₁₅NO₅ + Na]⁺ requires 276.0842; v_{max} (neat)/cm⁻¹ 3400, 1726, 1684, 1607, 1516, 1454, 1439, 1372, 1295, 1213, 1147, 1101; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.04 (1 H, br s, NH), 7.33 (1 H, s, CH), 3.62 (3 H, s, Me), 2.31-2.14 (5 H, m, CH₂ and Me), 1.99 (2 H, t, *J* 8.0, CH₂), 1.19 (3 H, s, Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 204.2 (C), 203.2 (C), 172.7 (C), 168.9 (C), 148.6 (C), 123.4 (CH), 51.7 (Me), 47.8 (C), 29.09 (CH₂), 29.05 (CH₂), 24.1 (Me), 18.9 (Me).

(±)-*cis*-*N*-(4a-Methyl-2,5-dioxo-2,3,4,4a,5,7a-hexahydrocyclopenta[b]pyran-7yl)acetamide (13)

A mixture of compound **12** (20 mg, 0.08 mmol) and zinc (10 mg, 0.16 mmol) in acetic acid (0.4 mL) was stirred at 80 °C for 24 h. After completion, the mixture was poured into saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate (3 x 20 mL). The combined organic phases were washed with brine, dried (Na₂SO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate

to give the *title compound* **13** (9 mg, 0.04 mmol, 51%) as a colourless solid; m.p. 203.0-205.4 °C; HRMS [ESI, $(M + Na)^+$] found 246.0745, $[C_{11}H_{13}NO_4 + Na]^+$ requires 246.0737; v_{max} (neat)/cm⁻¹ 3290, 3224, 2928, 1745, 1689, 1616, 1521, 1465, 1432, 1366, 1328, 1312, 1272, 1240, 1221, 1158, 1120; δ_H (400 MHz, CDCl₃) 8.13 (1 H, br s, NH), 6.79 (1 H, s, CH), 5.00 (1 H, d, *J* 0.8, CH), 2.52-2.45 (1 H, m, CH of CH₂), 2.24 (3 H, s, Me), 2.23-2.12 (2 H, m, CH₂), 1.77 (1 H, m, CH of CH₂), 1.31 (3 H, s, Me); δ_C (100 MHz, CDCl₃) 205.7 (C), 170.7 (C), 169.2 (C), 159.2 (C), 115.2 (CH), 84.6 (CH), 43.4 (C), 28.4 (CH₂), 27.9 (CH₂), 24.3 (Me), 22.5 (Me).

(±)-Methyl-*cis*-3a-hydroxy-1-(3-methoxy-3-oxopropyl)-4,4-dimethyl-5-oxo-1,2,3,3a,4,5hexahydrocyclopenta[*b*]pyrrole-3-carboxylate (14)

A mixture of compound **6** (20 mg, 0.14 mmol), cesium carbonate (187 mg, 0.58 mg), and methyl acrylate (0.4 mL) was stirred at 50 °C for 1 hour. After completion, the mixture was diluted with ethyl acetate, filtered, and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate-methanol (10:1) to give the *title compound* **14** (13 mg, 0.04 mmol, 29%) as a colourless solid; m.p. 127.1-129.4 °C; HRMS [ESI, (M + Na)⁺] found 334.1264, [C₁₅H₂₁NO₆+Na]⁺ requires 334.1261; v_{max} (neat)/cm⁻¹ 3189, 2956, 1744, 1728, 1679, 1589, 1459, 1438, 1415, 1390, 1374, 1331, 1289, 1198, 1179, 1138; $\delta_{\rm H}$ (400 MHz, CDCl₃) 4.65 (1 H, s, CH), 4.24 (1 H, t, *J* 9.8, CH of CH₂), 3.77 (3 H, s, Me), 3.70 (1 H, dd, *J* 10.3, 8.0, CH of CH₂), 3.68 (3 H, s, Me), 3.60 (2 H, dt, *J* 6.6, 3.5, CH₂), 3.29 (1 H, dd, *J* 9.4, 8.0, CH), 2.64 (2 H, t, *J* 6.5, CH₂), 1.20 (3 H, s, Me), 1.14 (3 H, s, Me), OH not observed; $\delta_{\rm C}$ (100 MHz, CDCl₃) 209.2 (C), 177.0 (C), 171.4 (C), 169.7 (C), 88.9 (CH), 87.8 (C), 55.3 (CH₂), 52.19 (Me), 52.16 (Me), 51.0 (C), 46.3 (CH), 43.5 (CH₂), 31.9 (CH₂), 24.9 (Me), 16.7 (Me).

2,6,6-Trimethyl-5*H*-cyclopenta[*b*]pyridine-5,7(6*H*)-dione (15)

A mixture of compound **6** (20 mg, 0.14 mmol), methyl vinyl ketone (0.03 mL, 0.29 mmol), potassium carbonate (100 mg, 0.72 mmol), copper bromide (9 mg, 0.06 mg) in acetonitrile (2 mL) was heated at 80 °C for 24 h. The mixture was filtered, concentrated *in vacuo*, and the residue was purified by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (1:1) to give the *title compound* **15** (9 mg, 0.05 mmol, 33%) as a yellow solid; m.p. 112.9-114.8 °C; HRMS [ESI, (M + Na)⁺] found 212.0686, [C₁₁H₁₁NO₂ + Na]⁺ requires 212.0682; v_{max} (neat)/cm⁻¹ 2969, 2932, 1753, 1710, 1586, 1568, 1465, 1457, 1381, 1293, 1258, 1155, 1098, 1052, 1003; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.18 (1 H, d, *J* 8.1, CH), 7.59 (1 H, d, *J* 8.0, CH), 2.82 (3 H, s, Me), 1.34 (6 H, s, 2 × Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 203.7 (C), 202.2 (C), 169.2 (C), 157.3 (C), 133.8 (C), 131.9 (CH), 129.3 (CH), 50.3 (C), 25.5 (Me), 20.2 (2 × Me).

4-(Dibenzylamino)-2,2-dimethylcyclopent-4-ene-1,3-dione (16)

A mixture of compound **6** (20 mg, 0.14 mmol), benzyl bromide (0.04 mL, 0.30 mmol), cesium carbonate (94 mg, 0.29 mg) in acetonitrile (1 mL) was heated at 80 °C for 5 hours. The mixture

was diluted with ethyl acetate, filtered, and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (3:7) to give the *title compound* **16** (32 mg, 0.10 mmol, 70%) as a yellow oil; HRMS [ESI, (M + Na)⁺] found 342.1464, [C₂₁H₂₁NO₂ + Na]⁺ requires 342.1465; v_{max} (neat)/cm⁻¹ 2966, 2928, 2866, 1730, 1676, 1591, 1578, 1495, 1451, 1419, 1369, 1301, 1264, 1240, 1147; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.38-7.29 (6 H, m, 6 × ArH), 7.16 (4 H, d, *J* 6.9, 4 × ArH), 5.81 (1 H, s, CH), 4.73 (4 H, br s, 2 × CH₂), 1.21 (6 H, s, 2 x Me); $\delta_{\rm C}$ (100 MHz, CDCl₃) 204.9 (C), 201.3 (C), 157.6 (C), 129.0 (6 × CH), 128.0 (4 × CH), 127.3 (2 × C), 111.9 (CH), 48.4 (C), 20.6 (2 × Me), 2 × CH₂ not observed.

2,2-Dimethyl-1*H*-cyclopenta[*c*]isoquinoline-1,3(2*H*)-dione (17)

A mixture of compound **16** (20 mg, 0.06 mmol), palladium (II) acetate (14 mg, 0.06 mg) in acetic acid (0.5 mL) was heated to 120 °C for 5 h. The mixture was concentrated *in vacuo* and diluted with ethyl acetate, filtered and the filtrate was washed with saturated aqueous sodium bicarbonate solution, brine, dried (Na₂SO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (3:7) to give the *title compound* **17** (11 mg, 0.05 mmol, 78%) as a colourless solid; m.p. 157.7 – 161.1 °C; HRMS [ESI, (M + Na)⁺] found 248.0682, [C₁₄H₁₁NO₂ + Na]⁺ requires 248.0682; v_{max} (neat)/cm⁻¹ 2923, 2853, 1747, 1700, 1576, 1562, 1505, 1456, 1442, 1382, 1375, 1305, 1248, 1161, 1091, 1044; δ_{H} (400 MHz, CDCl₃) 9.65 (1 H, s, ArH), 9.10 (1 H, dd, *J* 8.6, 0.7, ArH), 8.22 (1 H, d, *J* 7.3, ArH), 8.06 (1 H, ddd, *J* 8.4, 7.0, 1.4, ArH), 7.94 (1 H, ddd, *J* 8.4, 7.0,

1.2, ArH), 1.41 (6 H, s, 2 × Me); δ_C (100 MHz, CDCl₃) 204.5 (C), 203.3 (C), 161.6 (CH), 153.5 (C), 134.4 (CH), 131.2 (CH), 130.9 (C), 130.4 (C), 128.9 (CH), 126.0 (CH), 50.0 (C), 20.3 (2 × Me), 1 C not observed.

2,2-Dimethyl-4-(phenylamino)cyclopent-4-ene-1,3-dione (18)

A mixture of compound **6** (20 mg, 0.14 mmol), phenylboronic acid (35 mg, 0.29 mmmol), copper (II) acetate (26 mg, 0.14 mmol) in acetonitrile (1.5 mL) was heated at 80 °C for 3 h. After completion, the mixture was filtered, concentrated *in vacuo*, and the residue was purified by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (3:7) to give the *title compound* **18** (15 mg, 0.07 mmol, 48%) as an orange oil; HRMS [ESI, (M + Na)⁺] found 238.0838, $[C_{13}H_{13}NO_2 + Na]^+$ requires 238.0838; v_{max} (neat)/cm⁻¹ 3244, 2970, 2927, 2854, 1745, 1674, 1593, 1520, 1493, 1446, 1378, 1306, 1199, 1144; δ_H (400 MHz, (CD₃)₂CO) 8.45 (1 H, br s, NH), 7.48-7.41 (4 H, m, 4 × ArH), 7.20-7.16 (1 H, m, ArH), 6.32 (1 H, s, CH), 1.13 (6 H, s, 2 × Me); δ_C (100 MHz, (CD₃)₂CO) 205.29 (C), 203.24 (C), 153.0 (C), 140.2 (C), 130.3 (2 × CH), 125.3 (CH), 121.1. (2 × CH), 109.6 (CH), 46.0 (C), 20.6 (2 × Me).

2,2-Dimethylcyclopenta[*b*]indole-1,3(2*H*,4*H*)-dione (19)

A mixture of compound **18** (10 mg, 0.05 mmol) and palladium (II) acetate (10 mg, 0.05 mg) in acetic acid (0.5 mL) was stirred at 110 °C for 7 h. The mixture was concentrated *in vacuo*, diluted with ethyl acetate, and filtered. The filtrate was washed with saturated aqueous sodium carbonate solution, brine, dried (Na₂SO₄), filtered and concentrated *in vacuo*. The residue was purified by flash chromatography on silica gel eluting with ethyl acetate-light petroleum (1:5) to give the *title compound* **19** (8.7 mg, 0.04 mmol, 86%) as a colourless solid; m.p. 251.3-253.5 °C (decomp.); HRMS [ESI, (M + H)⁺] found 214.0869, [C₁₃H₁₁NO₂ + H]⁺ requires 214.0863; v_{max} (neat)/cm⁻¹ 3251, 2988, 2971, 2933, 1722, 1665, 1620, 1578, 1507, 1481, 1455, 1440, 1406, 1372, 1354, 1160, 1142, 1059; $\delta_{\rm H}$ (400 MHz, (CD₃)₂CO) 11.75 (1 H, br s, NH), 7.97 (1 H, dt, *J* 8.1, 1.2, ArH), 7.72 (1 H, dt, *J* 8.5, 1.0, ArH), 7.56-7.51 (1 H, m, ArH), 7.43-7.39 (1 H, m, ArH), 1.28 (6 H, s, 2 × Me); $\delta_{\rm C}$ (100 MHz, (CD₃)₂CO) 196.1 (C), 195.2 (C), 148.9 (C), 145.4 (C), 128.7 (CH), 126.1 (C), 124.4 (CH), 123.4 (CH), 121.3 (C), 115.2 (CH), 56.2 (C), 20.9 (2 × Me).

- (1) G. Sheldrick, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2015, 71, 3-8.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Crystallogr.*, 2009, 42, 339-341.
- C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Crystallogr.*, 2006, 39, 453-457.

166.265 170.526 205.957 206.158 206.347 206.464 206.510 207.428 112.094 71.639 44.090 30.032 30.225 30.418 10,982 23,970 24,015 29,262 29,455 29,647 29,840 . 0 -Me AcHN ОΗ Cis-3 PPM 200 120 100 80 60 40 20 180 160 140

SpinWorks 4: carbonstdi Acetone /nmr/400p tpha744 53

Crystal structure of **14**. Dashed lines show the intermolecular hydrogen bonding between the different molecules in the (bc) plane.

	3	9	10	14
CCDC	1975785	1975789	1975882	1975883
Formula	$C_8H_{11}NO_3$	$C_{14}H_{13}NO_5$	$C_{10}H_{11}NO_2$	$C_{15}H_{21}NO_6$
Formula weight (g mol ⁻¹)	169.18	275.25	177.20	311.33
Temperature (K)	106(7)	107(5)	107(4)	103(2)
Crystal size (mm)	$0.14 \times 0.14 \times 0.05$	$0.12\times0.12\times0.10$	$0.18 \times 0.13 \times 0.11$	$0.12 \times 0.10 \times 0.05$
Crystal system	orthorhombic	Orthorhombic	monoclinic	monoclinic
Space group	Pbca	$P2_{1}2_{1}2_{1}$	$P2_{1}/m$	$P2_{1}/n$
Unit cell dimensions	a = 11.7246(3) Å	a = 7.19640(10)Å	a = 7.1931(3) Å	a = 24.7484(3) Å
	b = 8.3285(2) Å	b = 11.9878(3) Å	b = 7.0581(4) Å	b = 10.7060(1) Å
	c = 16.9656(5)Å	c = 14.7510(3)Å	c = 8.4454(4)Å	c = 26.2577(3)Å
			$\beta = 92.515(4)^{\circ}$	$\beta = 115.723(1)^{\circ}$
Volume (Å ³)	1656.66(8)	1272.55(4)	428.35(3)	6267.71(13)
Z	8	4	2	16
Density _{calcd} (mg m ⁻³)	1.357	1.437	1.374	1.320
μ (mm ⁻¹)	0.875	0.930	0.788	0.858
F(000)	720.0	576.0	188.0	2656.0
Radiation (wavelength, Å)	$CuK\alpha \ (\lambda = 1.54184)$	CuKa ($\lambda = 1.54184$)	CuKa ($\lambda = 1.54184$)	$CuK\alpha$ ($\lambda = 1.54184$)
20 range (deg)	12.882 to 135.39	13.692 to 135.476	12.316 to 135.47	11.148 to 135.476
h range	-14 to 11	-8 to 8	-8 to 8	-29 to 29
k range	-7 to 9	-14 to 14	-8 to 8	-12 to 12
<i>l</i> range	-20 to 19	-17 to 17	-10 to 10	-31 to 31
Reflections collected / unique	5662/1491	7454/2314	4192 / 847	80297 / 11351
R _{int} /R _{sigma}	0.0320/0.0295	0.0325/0.0315	0.0471/0.0354	0.0430/0.0258
Restraints / parameters	0 / 119	0 / 192	11 / 142	2 / 821
Goodness-of-fit	1.063	1.048	1.062	1.028
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0375, wR_2 = 0.0945$	$R_1 = 0.0277, wR_2 = 0.0719$	$R_1 = 0.0331, wR_2 = 0.0886$	$R_1 = 0.0428, wR_2 = 0.1120$
R indices (all data)	$R_1 = 0.0425, wR_2 = 0.0977$	$R_1 = 0.0290, wR_2 = 0.0727$	$R_1 = 0.0365, wR_2 = 0.0915$	$R_1 = 0.0489, wR_2 = 0.1162$
Largest diff. peak/hole eÅ ⁻³	0.21/-0.21	0.21/-0.16	0.23/-0.15	0.36/-0.22
Flack parameter	-	-0.02(9)	-	-

Table S1. X-ray diffraction data for compounds 3, 9, 10 and 14.