Electronic supplementary information (ESI) for

One-pot synthesis of 1,3-butanediol by 1,4-anhydroerythritol hydrogenolysis over tungsten modified platinum on silica catalyst

Lujie Liu,^{*a*} Takehiro Asano,^{*a*} Yoshinao Nakagawa,^{*a,b,**} Masazumi Tamura,^{*a,b*} and Keiichi Tomishige^{*a,b,**}

^a Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan ^b Research Center for Rare Metal and Green Innovation, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan

* Corresponding authors.

School of Engineering, Tohoku University,

6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan

E-mail: yoshinao@erec.che.tohoku.ac.jp, Tel/Fax: +81-22-795-7215 (Y. N.);

tomi@erec.che.tohoku.ac.jp, Tel/Fax: +81-22-795-7214 (K. T.)

Contents

Description of experimental details

Supporting figures

Fig. S1 XRD patterns of (A) the Pt-WO_x/SiO₂ with different molar ratio of W to Pt after reduction at 473 K (L, 473) and the catalytic use in 1,4-AHERY hydrogenolysis. (a) 0.94 wt% WO_x/SiO₂, (b) 4 wt% Pt/SiO₂, (c) 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) after calcination, (d) W/Pt = 0.063, (e) 0.13, (f) 0.25, (g) physical mixture sample (0.94 wt% WO_x/SiO₂ + 4 wt% Pt/SiO₂,), (h) 0.5, (i) 1, and (B) amplified XRD pattern of sample (i).

Fig. S2 The XANES spectra of (A) Pt L_2 -edge, (a) Pt foil, (b) PtO₂, (c) 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) after calcination, (d) 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) after reduction (L, 473), and (B) W L_3 -edge, (a) W foil, (b) WO₂, (c) WO₃, (d) (NH₄)₆H₂W₁₂O₄₀·nH₂O, (e) 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) after calcination, (f) 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) after reduction (L, 473).

Fig. S3 Effect of support on the glycerol hydrogenolysis over the 4 wt% Pt-WO_x based catalysts (W/Pt = 0.25). Reaction conditions: Glycerol = 1 g, H₂O = 4 g, $W_{cat} = 0.2$ g, $P(H_2) = 8$ MPa, T = 413 K, t = 8 h.

Supporting tables

Table S1 Summary of previous reports on hydrogenolysis of glycerol to 1,3-PrD over Pt-WO_x based and the present catalysts using water as solvent

Table S2 Catalytic performance of Pt-WO_x/SiO₂ related catalysts in the glycerol hydrogenolysis

Table S3 Results of the 1,4-AHERY hydrogenolysis over 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) catalysts at same conversion level

Table S4 Reusability of 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) catalyst in the 1,4-AHERY hydrogenolysis

Table S5 Leaching amount of Pt and W after reduction or reaction

Table S6 Time course of the 1,4-AHERY hydrogenolysis over 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) catalyst

Table S7 Time course of the glycerol hydrogenolysis over 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) catalyst

Table S8 Summary of precursors, gases, supports and reagent used in this work

References

Experimental Section

Catalysts preparation. NM-MO_x/S (NM represents group 8 noble metals: Rh, Ru, Ir, Pt, Pd; M represents oxophilic metals: Mo, Re, W; S represents support: SiO₂, MgO, CeO₂, γ -Al₂O₃, ZrO₂, activated carbon, H-ZSM-5, rutile TiO₂, and P25 TiO₂) catalysts were prepared by sequential impregnation method. The preparation procedure for the typical Pt-WO_x/SiO₂ catalyst was shown as described below. Pt/SiO₂ was prepared by the impregnation of SiO₂ with an aqueous solution of Pt(NH₃)₄(NO₃)₂. After drying at 383 K for 12 h, the Pt-WO_x/SiO₂ sample was prepared by impregnation of Pt/SiO₂ with (NH₄)₆H₂W₁₂O₄₀·nH₂O solution. Typically, the loading amount of Pt was 4 wt%, and W/Pt molar ratio was 0.25. The sample was subsequently calcined in air at 773 K for 3 h after drying at 383 K for 12 h except activated carbon supported catalysts (no calcination treatment). All the precursors and supports as well as regents were summarized in Table S8.

Activity test. A stainless steel autoclave (190 ml) was used for activity test. First, the catalyst and water solvent were added to glass inner vessel. The vessel was set to the reactor, and then the reactor was purged with 1 MPa H₂ three times. After that, 8 MPa H₂ was introduced into the autoclave and temperature was increased to 473 K for reduction pretreatment for 1 h. After cooling down and depressurizing, a desired amount of substrate was quickly added into the autoclave. Once the temperature was increased to 413 K (reaction temperature), the reactor was pressurized with H₂ rapidly to 8 MPa and defined as 0 h. The mass transfer effects were eliminated at fixed stirring rate of 250 rpm. In the case of Ir-ReO_x/rutile catalyst, it was reduced by H₂ flow at 573 K for 1 h because it was the optimized conditions.^{S1} The Ir-ReO_x/rutile catalyst was introduced into the reactor under N₂ atmosphere to avoid exposure to air, and same procedure was employed to conduct reaction. After

reaction, a gas bag was used to collect gas-phase products for analysis using gas chromatograph (Shimadzu GC-2025). Liquid-phase products for GC test and HPLC (Shimadzu Prominence) with RID and a UV-vis detector were collected after separation from the rest of the reaction mixture. GC-MS (QP5050, Shimadzu) was further used to identify all the products. Others include THF, butanone, alkanes (C1-C4 alkanes), propanols and 1,4-anhydrothreitol (1,4-AHTRE). The carbon balance in each result was within the experimental error ($\pm 10\%$). The standard reaction was carried out in the following conditions: initial hydrogen pressure at 8.0 MPa, reaction temperature at 413 K, reaction time for 24 h, 0.5 g (4.8 mmol) of 1,4-anhydroerythritol, 4 g of water, and 200 mg of 4 wt% Pt-WOx/SiO2 (41 μ mol Pt, W/Pt = 0.25). Some of the parameters were adjusted to optimize catalytic performance, and the details can be found in each figure or table. For the reuse test, catalyst was reduced in liquid phase (L, 473). After reaction, separated catalyst by decantation was directly introduced to the autoclave for the next test under N₂ atmosphere without further reduction treatment. The amount of 1,4anhydroerythritol and water solvent in each reuse was adjusted to keep the 1.4anhydroerythritol/water/catalyst ratio.

Catalyst characterization. Inductively-coupled plasma atomic emission spectrometry (ICP-AES, ThermoFisher iCAP6500) was used to determine the leached amount after liquid-phase reduction and reuse test by filtration of samples under N₂ atmosphere. X-ray diffraction (XRD) patterns were obtained on a Rigaku MiniFlex600 diffractometer. The X-ray absorption near edge structure (XANES) spectra were measured with the approval of Japan Synchrotron Radiation Research Institute (JASRI; Proposal No. 2019A1825). The sample preparation method was as follows: In the case of catalyst after calcination at 773 K, the powder was directly filled into a plastic bag for measurement. For the reduced catalyst (L, 473), sample was collected under N₂ atmosphere, dried after washing with methanol, and then placed into a plastic bag. The thickness of all the samples was about 2 mm, which gave the edge jump for Pt L_2 -edge at 0.14–0.18 (transmission mode) and W L_3 -edge at 0.19–0.20 (fluorescence mode), respectively. Analyses of XANES data were performed using a computer program (REX2000, ver. 2.6; Rigaku Corp.).

Fig. S1 XRD patterns of (A) the Pt-WO_x/SiO₂ with different molar ratio of W to Pt after reduction at 473 K (L, 473) and the catalytic use in 1,4-AHERY hydrogenolysis. (a) 0.94 wt% WO_x/SiO₂, (b) 4 wt% Pt/SiO₂, (c) 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) after calcination, (d) W/Pt = 0.063, (e) 0.13, (f) 0.25, (g) physical mixture sample (0.94 wt% WO_x/SiO₂ + 4 wt% Pt/SiO₂), (h) 0.5, (i) 1, and (B) amplified XRD pattern of sample (i).

Fig. S2 The XANES spectra of (A) Pt L_2 -edge, (a) Pt foil, (b) PtO₂, (c) 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) after calcination, (d) 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) after reduction (L, 473), and (B) W L_3 -edge, (a) W foil, (b) WO₂, (c) WO₃, (d) (NH₄)₆H₂W₁₂O₄₀·nH₂O, (e) 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) after calcination, (f) 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) after reduction (L, 473).

Fig. S3 Effect of support on the glycerol hydrogenolysis over the 4 wt% Pt-WO_x based catalysts (W/Pt = 0.25). Reaction conditions: Glycerol = 1 g, H₂O = 4 g, $W_{cat} = 0.2$ g, $P(H_2) = 8$ MPa, T = 413 K, t = 8 h.

Entry Catalyst		Composition		Re cor	eaction aditions	P _{1,3-PrD} /	Highest 1,3-	Pof
Ешту	Catalyst	Pt /	W/Pt	$T / P(H_2) /$		$(g g_{Pt}^{-1} h^{-1})$	PID vield / %	Kel.
		wt%	wt% molar ratio		MPa		yield / /o	
1	Pt-LiSiW/ZrO ₂	1.0	(20 wt% HSiW) 18.3	453	5.0	0.2	23	[S2]
2	Pt/WO _x /Al ₂ O ₃	9.0	(8 wt% W) 0.94	493	4.5	0.6	28	[S 3]
3	Pt/WO _x /Al ₂ O ₃	8.9	(8 wt% W) 0.95	493	4.5	1	39	[S4]
4	Pt/WO ₃ /TiO ₂ /SiO ₂	2.0	(5 wt% WO ₃) 2.1	453	5.5	1	14	[\$5]
5	Pt/Ti ₈₀ W ₂₀	2.0	(W/Ti = 20:80)	453	5.5	1	15	[S6]
6	Pt/WO _x /SiO ₂ - ZrO ₂	2.0	(15 wt% WO ₃) 6.3	453	5.0	1	28	[S7]
7	Pt-WO ₃ /SBA-15	2.0	(10 wt% WO ₃) 4.2	483	0.1	2	36	[S8]
8	Pt/W-SBA-15	3.0	(0.5 wt% W) 0.16	423	4	2	61	[S9]
0		1.0	(8 wt% W)	453	5.0	2	66	[010]
9	Pt/wO _x /Alooh	1.8	4.7	413	1.0	0.5	-	[510]
10	Pt/WO ₃ /ZrO ₂	3.0	(10 wt% W) 3.5	403	4.0	2	32	[S 11]
11	Pt/WO _x /Al ₂ O ₃	6.0	(12.9 wt% W) 2.3	453	5.0	3	28	[S12]
10	Dt/mark W/O	2.0		433	1.0	4	14	[012]
12	PUmeso-wO _x	2.0	-	413	1.0	2	22	[313]
13	Pt/ZrW38Mn3	2.0	(38 wt% W) 20.2	453	8.0	4	26	[S14]
14	Pt-WO _x /t-ZrO ₂	2.0	(7.7 wt% W) 4.1	413	8.0	5	49	[S15]
15	Pt-WO _x /SiO ₂	4.0	(0.94 wt% W) 0.25	413	8.0	4.8	57	This work

Table S1 Summary of previous reports on hydrogenolysis of glycerol to 1,3-PrD over Pt-WO_x based and the present catalysts using water as solvent

Catalvat	W/Pt	Conv.	Selectivity / %						
Catalyst	ratio	/ %	1,3-PrD	1-PrOH	2-PrOH	1,2-PrD	Acetone	Propane	
4wt% Pt-WO _x /SiO ₂	0.063	<2	-	-	-	-	-	-	
	0.13	9	56	6	21	14	2	<1	
	0.25	56	65	17	12	4	1	1	
	0.5	8	53	29	8	4	1	4	
	1	<2	-	-	-	-	-	-	

Table S2 Catalytic performance of Pt-WO_x/SiO₂ related catalysts in the glycerol hydrogenolysis

Reaction conditions: Glycerol = 1 g, $H_2O = 4$ g, $W_{cat} = 0.2$ g, $P(H_2) = 8$ MPa, T = 413 K, t = 8 h.

W/Pt	<i>t</i> /	Conv.		Selectivity / %						
ratio	h	/ %	1,3-BuD	1,2,3-BuT	1-BuOH	2-BuOH	1,2-BuD	2,3-BuD	3-HTHF	Others
0.063	144	22	19	69	<1	3	-	-	7	2
0.13	24	25	24	66	<1	4	1	1	3	1
0.25	4	26	17	74	1	5	-	-	3	<1
0.5	24	26	25	60	2	8	2	1	2	<1
1	144	26	19	57	3	15	-	1	3	2

Table S3 Results of the 1,4-AHERY hydrogenolysis over 4 wt% $Pt-WO_x/SiO_2$ (W/Pt = 0.25) catalysts at same conversion level

Reaction conditions: 1,4-AHERY = 0.5 g, $H_2O = 4$ g, $W_{cat} = 0.2$ g, $P(H_2) = 8$ MPa, T = 413 K.

1,4-	Water	Catalyst	C				Selectivit	y / %			
AHERY	amount	amount	Conv.	1,3-	1,2,3-	1-	2-	1,2-	2,3-	3-	Others
amount /	′g /g	/ g	/ %	BuD	BuT	BuOH	BuOH	BuD	BuD	HTHF	Others
0.50 ^{1st}	4.00	0.20	34	18	71	1	6	<1	<1	3	<1
0.40^{2nd}	3.20	$(0.16)^{a}$	38	19	72	2	5	<1	-	2	<1
0.31 ^{3rd}	2.56	$(0.13)^{a}$	36	20	70	2	6	-	-	2	<1
0.25 ^{4th}	2.04	0.11	37	19	73	1	4	-	-	2	<1

Table S4 Reusability of 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) catalyst in the 1,4-AHERY hydrogenolysis

Reaction conditions: 1,4-AHERY = 0.5 g, H₂O = 4 g, W_{cat} = 0.2 g, T = 413 K, t = 6 h.

^aEstimated amount from the final catalyst amount.

Catalant		Conditions	Metal leached / %		
Catalyst	Usage time	Conditions	Pt	W	
4 wt% Pt-WO _x /SiO ₂		(I 172) modulation	0.0	26	
(W/Pt = 0.25)	-	(L, 475), reduction	0.9	3.0	
	1	Reaction	< 0.1	1.8	
	2	Reaction	< 0.1	0.3	
	3	Reaction	< 0.1	< 0.2	

Table S5 Leaching amount of Pt and W after reduction or reaction

Note: The leached amount was on the basis of metal loading amount. (L, 473) means that catalyst was pre-reduced by H_2 in the presence of H_2O at 473 K for 1 h.

t / h	Conv.	Selectivity / %									
1 / 11	/ %	1,3-BuD	1,2,3-BuT	1-BuOH	2-BuOH	1,2-BuD	2,3-BuD	3-HTHF	Others		
0	<1	-	-	-	-	-	-	-	-		
2	11	15	74	1	6	-	-	2	2		
4	26	17	74	1	5	-	-	3	<1		
6	34	18	71	1	6	<1	<1	3	<1		
12	51	23	64	1	5	1	2	4	<1		
24	60	38	41	2	7	2	5	5	<1		
48	82	48	25	5	13	1	5	3	<1		
80	100	54	3	11	26	-	4	<1	1		
100	100	43	-	19	37	-	-	<1	1		

Table S6 Time course of the 1,4-AHERY hydrogenolysis over 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) catalyst

Reaction conditions: 1,4-AHERY = 0.5 g, $H_2O = 4$ g, $W_{cat} = 0.2$ g, $P(H_2) = 8$ MPa, T = 413 K.

4 / h	Conv.	Selectivity / %								
1 / 11	/ %	1,3-PrD	1-PrOH	2-PrOH	1,2-PrD	Acetone	Propane			
0	<1	-	-	-	-	-	-			
1	10	63	19	13	2	2	1			
2	21	62	20	12	4	2	-			
8	56	65	17	12	4	1	1			
12	82	64	18	12	5	<1	1			
24	100	57	28	12	1	-	2			
30	100	50	35	13	<1	-	2			

Table S7 Time course of the glycerol hydrogenolysis over 4 wt% Pt-WO_x/SiO₂ (W/Pt = 0.25) catalyst

Reaction conditions: Glycerol = 1 g, $H_2O = 4$ g, $W_{cat} = 0.2$ g, $P(H_2) = 8$ MPa, T = 413 K.

Precursor or reagent	Manufacturer
$Pt(NH_3)_4(NO_3)_2$	Sigma Aldrich
$Pd(NO_3)_2$	N.E. Chemcat Co., Ltd.
RhCl ₃ ·3H ₂ O	FUJIFILM Wako Pure Chemical Co.,
$Ru(NO)(NO_3)_{3-x}(OH)_x$	Sigma Aldrich
H ₂ IrCl ₆	Furuya Metals Co., Ltd.
NH ₄ ReO ₄	Soekawa Chemical Co., Ltd.
$(NH_4)_6H_2W_{12}O_{40}\cdot nH_2O$	FUJIFILM Wako Pure Chemical Co.,
$(NH_4)_6Mo_7O_{24} \cdot 4H_2O$	FUJIFILM Wako Pure Chemical Co.,
H_2	Nippon Peroxide Co., Ltd., 99.99%
N_2	Nippon Peroxide Co., Ltd., >99%
SiO ₂	G6, Fuji Silysia, calcined at 973 K for 1 h, S_{BET} 485 m ² g ⁻¹
MgO	Ube Industries, Ltd., 500A, $34 \text{ m}^2 \text{ g}^{-1}$
CeO ₂	Daiichi Kigenso Co., Ltd., HS, calcined at 873 K for 1 h, 84 m ² g ⁻¹
γ -Al ₂ O ₃	Nippon Aerosil Co., Ltd., calcined at 973 K for 1 h, 100 m ² g ⁻¹
ZrO_2	Daiichi Kigenso Kogyo Co., Ltd., calcined at 773 K for 1 h, 62 m ² g ⁻¹
Activated carbon	Shirasagi FAC-10, Japan EnviroChemicals, Ltd., 851 m ² g ⁻¹
H-ZSM-5	JRC-Z5-90H(1), Süd-Chemie Catalysts and Catalysis Society of Japan, Si/Al ₂ = 90, 270 m ² g ⁻¹
Rutile TiO ₂	Wako Pure Chemical Industries, Ltd., 6 m ² g ⁻¹
P25 TiO ₂	Nippon Aerosil, 50 m ² g ⁻¹
H_2	Nippon Peroxide Co., Ltd., 99.99%
N_2	Nippon Peroxide Co., Ltd., > 99%
CH ₄	Japan Fine Products Corp., 22.1%, diluted with Ar, standard gas
$C_2H_6 + C_3H_8 + n$ - C_4H_{10}	GL Sciences, C_2H_6 (0.997%) + C_3H_8 (1.00%) + C_3H_8 (1.02%), diluted with N ₂ , standard gas
Glycerol	FUJIFILM Wako Pure Chemical Co., >99%
Erythritol	FUJIFILM Wako Pure Chemical Co., >97%
1,4-Anhydroerythritol	Tokyo Chemical Industries, Ltd., >98%
1,2,3-Butanetriol	Tokyo Chemical Industries, Ltd., >90%
1,2,4-Butanetriol	FUJIFILM Wako Pure Chemical Co., >95%
1,3-Butanediol	FUJIFILM Wako Pure Chemical Co., >98%
1,4-Butanediol	FUJIFILM Wako Pure Chemical Co., >98%
1,2-Butanediol	FUJIFILM Wako Pure Chemical Co., >98%
2,3-Butanediol	Tokyo Chemical Industries, Ltd., >97%
3-Hydroxytetrahydrofuran	FUJIFILM Wako Pure Chemical Co., >97%
2-Butanol	FUJIFILM Wako Pure Chemical Co., >99.5%
1-Butanol	FUJIFILM Wako Pure Chemical Co., >99%
2-Butanone	Tokyo Chemical Industries, Ltd., >99%
1,3-Propanediol	FUJIFILM Wako Pure Chemical Co., > 97%
Acetone	Kanto Chemical Co., Inc., >99.5%
1,4-Dioxane	FUJIFILM Wako Pure Chemical Co., >99%, internal standard

Table S8 Summary of precursors, gases, supports and reagent used in this work

References

- S1 L. J. Liu, T. Asano, Y. Nakagawa, M. Tamura, K. Okumura and K. Tomishige, ACS Catal., 2019, 9, 10913-10930.
- S2 S. Zhu, X. Gao, Y. Zhu, Y. Zhu, X. Xiang, C. Hu and Y. Li, Appl. Catal. B, 2013, 140-141, 60-67.
- S3 S. García-Fernández, I. Gandarias, J. Requies, M. B. Güemez, S. Bennici, A. Auroux and P. L. Arias, *J. Catal.*, 2015, **323**, 65-75.
- S4 S. García-Fernández, I. Gandarias, J. Requies, F. Soulimani, P. L. Arias and B. M. Weckhuysen, *Appl. Catal. B*, 2017, **204**, 260-272.
- S5 L. Gong, Y. Lu, Y. Ding, R. Lin, J. Li, W. Dong, T. Wang and W. Chen, *Appl. Catal. A*, 2010, **390**, 119-126.
- S6 Y. Zhang, X.-C. Zhao, Y. Wang, L. Zhou, J. Zhang, J. Wang, A. Wang and T. Zhang, J. Mater. Chem. A, 2013, 1, 3724-3732.
- S7 S. Zhu, X. Gao, Y. Zhu, J. Cui, H. Zheng and Y. Li, Appl. Catal. B, 2014, 158-159, 391-399.
- S8 S. S. Priya, V. P. Kumar, M. L. Kantam, S. K. Bhargava, A. Srikanth and K. V. R. Chary, *Ind. Engin. Chem. Res.*, 2015, **54**, 9104-9115.
- S9 Y. Fan, S. Cheng, H. Wang, D. Ye, S. Xie, Y. Pei, H. Hu, W. Hua, Z. H. Li, M. Qiao and B. Zong, *Green Chem.*, 2017, **19**, 2174-2183.
- S10 R. Arundhathi, T. Mizugaki, T. Mitsudome, K. Jitsukawa and K. Kaneda, *ChemSusChem*, 2013, 6, 1345-1347.
- S11 L.-Z. Qin, M.-J. Song and C.-L. Chen, Green Chem., 2010, 12, 1466-1472.
- S12 N. Lei, X. Zhao, B. Hou, M. Yang, M. Zhou, F. Liu, A. Wang and T. Zhang, *ChemCatChem*, 2019, 11, 3903-3912.
- S13 J. Wang, X. Zhao, N. Lei, L. Li, L. Zhang, S. Xu, S. Miao, X. Pan, A. Wang and T. Zhang, *ChemSusChem*, 2016, 9, 784-790.
- S14 W. Zhou, J. Luo, Y. Wang, J. Liu, Y. Zhao, S. Wang and X. Ma, *Appl. Catal. B*, 2019, 242, 410-421.
- S15 Y. Fan, S. Cheng, H. Wang, J. Tian, S. Xie, Y. Pei, M. Qiao and B. Zong, *Appl. Catal. B*, 2017, 217, 331-341.