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 S0. Data selection 

For details on the data selection and curation, we refer to our previous study 1. Briefly, in both the 

current study and our previous study, the underlying data were a mix of second-order and first-order rate 

constants for primary aerobic biodegradation. The starting point was to include only unadapted 

communities 1. However, we cannot exclude the presence of communities present due to e.g. (historic) 

cometabolism or from (local) background concentrations. These may be constant factors for many 

chemicals, moreover, for a large dataset (e.g. N=550), the effects encoded in the predicted (RF) values for 

kb are ‘averaged out’ and only consider the differences between chemicals. Thus, the data unit was 

‘homogenized’: when unavailable, we considered the biomasses to be constant and convert the first-order 

rate constants (1) to second-order rate constants (2) according to: 

kb(1) = [Biomass] x kb(2) 

In total, we selected 550 compounds. Structures were drawn for their speciated form, at experiment-

specific pH, where possible. We performed corrections for bioavailability via sorption to dissolved organic 

carbon. Fig. S1 shows the distribution of logKOW and molecular volume. With exception of a few 

compounds, logKOW was between -4 and +4. We included highly diverse molecular volumes, ≤400 Å3: 

   

Fig. S1. The distribution of logP and molecular volume of the compounds (N=550). 
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S1. Supplemental RF-QSBR validation 

The RF-QSBR has R2
ext = 0.66±0.05, and root-mean-squared error (RMSEext) = 0.53±0.03. The RF-

QSBR entailed fewer outliers (0.5<RMSE<0.6) than previously (0.7)1 showing the RF algorithm finds more 

statistically significant relationships between structural aspects and kb, i.e. ‘learned’ ‘more’ from the larger 

dataset (predictions are more precise). This is an intrinsic result in ‘big data’ science. 

Fig. S2 shows the predicted kb values by the RF-QSBR versus the biodegradation probability from 

CATABOL. We find a general agreement, with discrepancies for e.g. cyanobenzenes, pyridines 

desulfuration and beta-oxidaton not being significant. Discrepancies may arise due to: 1) either the 

CATABOL or current dataset carries insufficient learning data, 2) CATABOL is not parameterized to account 

for acclimation (implying e.g. that bacteria are ‘more easily’ acclimated to pyridines than to nitriles), 3) 

abiotic hydrolysis 2, 3, 4) naturally occurring nitrilase-like enzymatic activity may be relatively abundant 4.  

 

Fig. S2. Predicted logkb versus the probability of the principle reaction (biodegradation step) as utilized by CATABOL 5, 6. Lines 

denote a sigmoid fit and 1 standard error. Probability for trifluoroacetate (lower bottom-left) was taken based on structurally 

related compounds. 
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S2. Calculations 

According to the collision theory, the number of molecules of product formed per unit time per 

unit volume is equal to the number of collisions, A, multiplied by a factor, which takes into account the 

fact that only a fraction of the collisions involve molecules that possess the excess energy, activation 

energy, necessary for reaction7. The dynamics of diffuse fronts in systems modeled with step-function 

kinetics and in systems modeled with the Arrhenius kinetics are qualitatively the same at time scales at 

which the bulk reaction ahead of the front can be ignored 8. Based on these notions, we define: 

Equation S1-1  𝑘𝑏 ∝  𝐴(𝑖 − 𝑗)   ⋅   𝑃(𝑖 − 𝑗)𝑒
−Δ𝐺‡(𝑖−𝑗)

𝑅𝑇   

Wherein: 

Equation S1-2  𝐴(𝑚𝑖−𝑗) =
∑ 𝐷(𝑖−𝑗)𝑖

𝑖=0

𝑑(𝑖−𝑗)⋅𝛬
    

The interpretation of the symbols is given in the main document. 𝛬 is the de Broglie wavelength, 𝛬 = ℎ/𝑝, 

with ℎ Planck’s constant and 𝑝 the momentum of the particle/molecule. The latter we consider constant 

for all molecules.  

We calculated the terms in Eq. S1 as custom descriptors via SMILES (Simplified Molecular Input 

Line Entry System) input. As the electronic structure of molecules and energies of their frontier orbitals 

can be significantly altered by (de-)protonation, we implement pH-corrected ionic speciation states for 

the calculations: we determined ion speciation states at experimental pH (~7.4) using pKa/pKb, taken from 

the literature or estimated using ChemAxon9.  

We refer to the spreadsheets, as supplementary information, for practical examples of application 

of the methods. 

 

  



Calculation of ΔG‡ 

From the vast number of possible bacteria, enzymes, isoforms, concentrations, geometries, co-

factors, etc., we regard direct calculation of realistic activation energies Δ𝐺‡ using current chemo-

informatic tools for the chemicals considered not realistic.  

On a higher level, there is some empirical evidence that Δ𝐺‡ relates to delocalizability (𝛿) and the 

energy of the highest occupied molecular orbital (EHOMO) of the molecule, Eq. S2. We calculate 𝛿 via atom-

specific Fukui (electrophillic) delocalizability indices 10. We take delocalizabilities as minimum values on 

aliphatic and maximum values among aromatic carbons in the molecule, respectively. 

Equation S2   Δ𝐺‡ = 𝑓(𝛿, 𝐸HOMO) 

Based on previous results 11-15, we calculated 𝛿 and EHOMO via MOPAC 16, 17. Structures were pre-

optimized using OpenBabel18 and molecular orbital (MO) calculations were carried out using the semi-

empirical Hamiltonian Parameterization Method 7 (PM7 Hamiltonian) within the program package 

MOPAC Version 2016 16 with 92 geometrical segments (NSPA). We describe the water solvent (ε = 78.4) 

using the COSMO Implicit Solvation (Conductor-like Screening approximation) Model. 

Semi-empirical MO theory was chosen to limit the computational effort, but we increased the 

criteria for terminating electronic and geometric optimizations by a factor 100 to acquire more precise 

results. The accuracy of MOPAC’s 3D structure generation is evaluated elsewhere: relevant information, 

e.g. heat of formations, can be accessed here: 

http://openmopac.net/PM7_accuracy/Heats_of_Formation.html  

  

http://openmopac.net/PM7_accuracy/Heats_of_Formation.html


Calculation of D 

Considering the complexity of biodegradation, we deemed it not realistic to discern between the 

potential influences of diffusion through membranes, aqueous pores or towards/within cascades of 

proteins/enzymes. As a more general description, we considered for diffusion limited reactions:  

Equation S3  𝑘b  ∝ 𝐴 =  (𝐷i  +  𝐷j)  ⋅  𝑅0 

where 𝑅0 is the minimal distance between molecule 𝑖 and enzyme 𝑗 active sites obtainable during the 

biotransformation. With virtually endless possible sizes and shapes for the enzymes active sites, it seems 

unlikely that we can specify 𝐷j. Luckily, since the enzyme/bacteria is large, it is effectively stationary, and 

only 𝐷i is relevant: 

Equation S4  𝐴 ∝  (𝐷i)  ⋅  𝑅0 

It is cumbersome to calculate 𝐷i for 550 molecules using ‘ab initio’ methods. Rather, we 

determined the diffusion coefficient via the Stokes-Einstein relationship and volume 19-21: 

Equation S5  𝐷 ∝ 𝑉−1/3  

With 𝑉 as molecular volumes. We anticipate deviations in Eq. S5 for non-spherical molecules which we 

characterized by d. We describe deviations due to polarity influence on the diffusion of molecules by P. 

Both are detailed below. 

 

  



Calculation of d  

Collision theory gives good results for bimolecular gas reactions and reactions in solution involving 

simple ions. However, for many other reactions the predicted rates are (much) too large. The deviation 

appears to increase with the complexity of the reactant molecules. As a means of correcting for this 

deviation we need a probability or steric factor 22. Illustratively: 

     

Fig. S3. Log-transformed length-normalized kb’ (alkanes+alcohols) versus a steric factora. Error bars are RF prediction uncertainties 

 

Computation of surface accessibility has importance in drug (ligand) design: most binding sites for 

small ligands in proteins are cavities, with specific accessibility (imposing an upper limit for a probe). 

Illustratively, the weight of the catalytic domain positively correlates with the catalysis23. We assume the 

minimal distance 𝑅0 (Eq. S4) to express effective interaction (catalysis) which is proportional to the 

effective areas. Then, we can use the accessibility ratio, as proposed by Feldblum and Isaiah 24 to 

determine the characteristic distance 𝑑(𝑖 − 𝑗) of the chemical and active site via: 

Equation S6  𝑑(𝑖 − 𝑗) ~ 𝑅0 ~ 𝑅g  ⋅  
𝐴𝑆𝐴(𝑖−𝑗)

𝑣𝑑𝑤𝑆𝐴(𝑖)
 

in which 𝐴𝑆𝐴(𝑖 − 𝑗) the accessible surface area (e.g. to the enzymes catalytic site), 𝑣𝑑𝑤𝑆𝐴(𝑖) is the van 

der Waals surface area, and 𝑅g is the radius of gyration. We approximate 𝑅g by substituting volumes into: 

 
a Here, we show the steric factor as number of carbon bonds adjacent to t-Bu. kb’ was taken as kb = kb (n, t-Bu) / kb (n), wherein kb (n) is kb for the 
equivalent compound (to kb (n, t-Bu)) without the t-Bu group. 



Equation S7   𝑅g ~ (
3

4

𝑉

𝜋
)

1/3
 

The 𝐴𝑆𝐴(𝑖 − 𝑗) of atom 𝑖 is defined as the locus of the center of the probe 𝑗. The 𝐴𝑆𝐴 of an atom 

radius r is the area on the surface of the sphere of radius R=r+rprobe on each point of which the probe 

(solvent) molecule can be placed in contact with this atom without penetrating any other atoms of the 

molecule. Fig. S4 illustrates parameters in Eq. S6, e.g. the black circle denotes 𝑅g, proportional to the root 

mean square distance of all atoms:   

 

Fig. S4. Two-dimensional depiction of the accessibility ratio 
𝐴𝑆𝐴(𝑖−𝑗)

𝑆𝐴(𝑖)
.  

 

Probing the 550 molecules with a multitude of biochemical 3D structures is computationally 

intensive and laborious. As protein binding sites are accessible only to small molecules, there is a 

connection between cavity and solvent accessible surface area. Therefore, instead we take as the probe 

simply a H2O molecule with a radius ~1.4A. Thus, we simplify 𝐴𝑆𝐴(𝑖 − 𝑗) as determined by the solvent 

molecule H2O rolling over the van der Waals (vdw) surface area of the solute molecule25.  

Since charge can affect intramolecular forces, we let Chemaxon calculate values for the areas at 

pH=7.4: 𝑣𝑑𝑤𝑆𝐴(𝑖)𝑝𝐻=7.4 and 𝐴𝑆𝐴(𝑖)𝑝𝐻=7.4. 



 Calculation of (Σ) 

In-house preliminary analysis including the multiplicity Σ (number of equivalent functional groups) 

did not find any significant improvement of the correlations of both global and class specific sets of 

compounds via any known (to us) methods. Hence, the multiplicity was not taken into account in this 

study. 

  



Calculation of P 

The membrane and internal cellular components are main barriers for diffusion. The diffusion 

coefficient can be determined via the Hayduk-Laudie correlation, but applies only to uncharged 

molecules. For charged molecules, the solvation layer needs to be included. This is because ionic diffusion 

is slower when the hydration layer is thicker due to higher the ionic potential.  

We calculated logKOW (characterizing facilitated diffusion), for specific speciation states (pH=7.4) 

of the molecules, i.e. logDOW,pH=7.4 via Chemaxon 9, 26 and validated manually via the Molinspiration 

webtool 27. Then, logKOW characterizes diffusion via the inclusion of the hydration layer. We consider P 

constant for all carboxylates on the basis that ionic binding is stronger than hydrophobic binding: kb values 

for carboxylates were not corrected for KOW.  

To illustrate the interdependence of parameters in Eq. S1, Fig. S5 shows the dependence of KOW 

on surface area for ‘like’ chemical classes e.g. ethylene glycol oligomers, alkanes, etc.: 

  

Fig. S5. The interdependence between KOW and molecular surface area of oligomers. Blue are alkanes, red are ethylene glycol 

oligomers, green are carboxylates, yellow are alcohols. 

 

The solid curves in Figure S6B shows expected values based on thermodynamic considerations, 

based on the formula: 
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Equation S8  𝑘𝑏 ∝
1

𝑆𝐴
= ±

0.13

𝑙𝑛(𝐾OW)−ln (𝐾OW´)
 

Wherein 𝐾OW is cross-correlated to e.g. surface area via 𝐾OW ∝  𝑒±0.13𝑆𝐴 (calculated via 27). 𝐾OW´ is size 

independent and compound specific (Fig. S6). By extension, we use a relation between area-normalized 

𝑘𝑏 and 𝐾OW: 

   

Fig. S6. A: The surface area-normalized biodegradation rate constant versus logKOW. We normalized for surface area via its 

relationship with KOW (Fig. S5). B: The biodegradation rate constant versus logKOW (via logDOW, pH=7 as calculated via 

Molinspiration). Colors indicate different families of molecules/oligomers. Green: carboxylates, red: ethylene glycol oligomers, 

yellow: alcohols, purple: carboxylates, blue: alkanes. Solid lines denote the expected values based on KOW and KOW’. 

 

We consider kb data for compounds with no significant variation as expected from EHOMO or 𝛿 (i.e. Δ𝐺‡ is 

constant). For these data, based on Fig. S6A, the partition function relates to KOW: 

Equation S9  kb  ∝ P ∝ 0.10(±0.02) ⋅ KOW 

I.e. a factor ~10 difference in the equilibrium partitioning. In comparison the carbon density in bacteria is 

a factor ~3 higher than in octanol. For a better comparison, we should distinguish between the fractions 

of polar and non-polar carbon. Hence, we view the obtained regression with logKOW to be in line with the 

differences in organic carbon density between octanol and active biomass in environmental matrices. 
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S3. Supplemental modelling results 

We have used P, D and the accessibility term d to transform the kb values. Via fitting all parameters 

(see above) to 𝑘𝑏 data for ‘similarly reactive chemicals’, Eq. S1 becomes:  

Equation S10  𝑘𝑏 ∝ 𝑉(𝑖 − 𝑗)−1/3 ⋅ 𝐾𝑂𝑊(𝑖 − 𝑗)0.1 ⋅ (𝑅𝑔
𝐴𝑆𝐴(𝑖−𝑗)

𝑆𝐴(𝑖)
)

−1.8
⋅ ∑ 𝑒

−Δ𝐺‡(𝑖−𝑗)

𝑅𝑇𝑖
𝑖=0   

Wherein the apparent Δ𝐺‡(𝑖 − 𝑗) is described in terms of 𝛿 and EHOMO (S2).  

 

  



 

 

Fig. S7. The log(kb/P), i.e. logkb normalized for the partition function, versus the frequency factor A. Black symbols denote 

‘electron-rich’ compounds. 
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Fig. S8. A: log kb (transformed kb values) versus EHOMO. Orange triangles denote nitrogen-containing compounds, each with more 

than 1 possible biotransformation pathway according to EAWAG PPS 28; red denotes natural substances. Fig. B: log kb (non-

transformed kb values) versus EHOMO. Tricyanoacetate (orange triangle) did not adhere to the LFER in Fig. S8A. 
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Fig. S9. CATABOL predictions (y) versus the current study (x) predictions for biodegradation. Red triangles denote compounds 

entailing possibly hydrolytically unstable groups, i.e. which degrade abiotically.  

 

From the ‘global’ QSAR, we have found R2 = 0.66 ± 0.05 and RMSEpred ~ 0.53 ± 0.03. The latter 

number entails both prediction uncertainty and internal variability as a result of test conditions. If we 

consider ‘like’ chemicals only, test conditions factor out (only the transformation step is considered). 

Then, the RMSEpred in kb is a function of the combined RMSE, e.g. 0.5⋅RMSEtotal 12. This was used to 

construct error bars throughout this study. 
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