Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2020

Scalable synthesis and polymerisation of an α -angelica lactone derived monomer

Andrea Dell'Acqua, a,† Bernhard M. Stadler, a,† Sahra Kirchecker, a Sergey Tina and Johannes G. de Vriesa,*

^aLeibniz Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Strasse 29a, 18055 Rostock E-mail: johannes.devries @catalysis.de

Supporting Information

Table of Contents

Experimental Procedures

1. General information

Reagents: α -angelica lactone (98%, Sigma Aldrich) was used as received, triethylamine (99% Acros) was distilled over KOH and stored under argon atmosphere, aluminium triflate (98%, Sigma Aldrich) and zinc chloride (99%, abcr) were stored under argon in a glove box.

Cyclopentadiene (CPD) was prepared by thermal cracking of dicyclopentadiene (TCI) over iron(0) at 180°C.

MMR-Spectroscopy: ¹H-NMR and ¹³C-NMR were recorded at ambient temperature on 300 MHz spectrometers (Avance 300 respectively Fourier 300) or a 400 MHz spectrometer (Avance 400) from Bruker. The chemical shifts δ are given in ppm and referenced to the residual proton signal of the deuterated solvent used.

Gel permeation chromatography (GPC): Gel permeation chromatograms were recorded with 1260 Infinity GPC/SEC System from Agilent Technologies. The setup consisted of a SECcurity Isocratic Pump, SECcurity 2-Canal-Inline-Degaser, SECcurity GPC-Column thermostat TCC6000, SECcurity Fraction Collector and SECcurity Differential Refractometer detector. The measurements were performed at a constant temperature of 50 °C using three columns with a polyester co-polymer network as the stationary phase (PSS GRAM 30 Å, 10 μ m particle size, 8.0 × 50 mm; PSS GRAM 30 Å, 10 μ m particle size, 8.0 × 300 mm; PSS GRAM 1000 Å particle size, 8.0 × 300 mm). THF was applied as the mobile phase with a flow rate of 1 mL·min⁻¹. Polystyrene standards from ReadyCal (PSS-pskitr1I-10, Mp = 370–2520000 g·mol⁻¹) were used for calibration purposes.

<u>Differential scanning calorimetry (DSC):</u> Melting points and glass transition temperatures of polyesters were measured with a *Star-SW DSC* from *Mettler Toledo* using the following temperature program: -90.00 °C isothermal 5.00 min; Ramp 10.00 °C min⁻¹ to 200.00 °C; Ramp 10.00 °C/min to -90.00 °C; -90.00 °C isothermal 5.00 min; Ramp 10.00 °C min to 200.00 °C; Ramp 10.00 °C/min to -90.00 °C.

2. Preparation of a mixture of angelica lactones with 90 mol-% content of the β-isomer

 α -angelica lactone (98%, 120 g, 1.2 mol) was added to a 250 ml two neck flask equipped with a condenser and a magnetic stirrer followed by the addition of triethyl amine (5 mol-%, 8.5 ml). The mixture was heated to 100 °C under an argon atmosphere and monitored by ¹H-NMR. After 1.5 hours a ratio of β/α -angelica lactone of 90-95/10-5 was reached and the condenser exchanged with a distillation head. Subsequent vacuum distillation at 6 x10⁻² mbar yielded two fractions: on at 38-42°C containing mainly the α -isomer (This fraction was reused for the next

isomerisation reaction.) and another one at $45-50^{\circ}$ C contained a mixture of angelica lactones with 90 mol-% content of the β -isomer (106 g, 88% of theory).

¹H NMR (400 MHz, CD₂Cl₂, signals of β-isomer are reported) δ 7.46 (dd, J = 5.7, 1.5 Hz, 1H), 6.04 (dd, J = 5.7, 2.0 Hz, 1H), 5.11 (qt, J = 6.9, 2.0, 1.5 Hz, 1H), 1.41 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 173.3, 158.0, 121.3, 80.0, 19.0.

3. Screening procedure of the DA-reaction with β -Angelica lactone and CPD

In a dry and argon purged 10 ml reaction tube the angelica lactone mixture (β -AL=90%, 10 mmol, 900 μ l) and the desired catalyst were mixed. Freshly prepared CPD (3.0-10 eq. 2.5-8.3 ml) was added, the tube was sealed and heated with a microwave oven to the desired reaction temperature where it is kept for the indicated time.

The 2 diasteroisomers of the product were separated by flash column chromatography (heptane/ethyl acetate 8:2), affording the *endo* and *exo* isomers (each of them is a racemic mixture of 2 diastereomers) adduct as colourless oils (*endo*: 949 mg, 5.9 mmol, 30%; *exo*: 119 mg, 0.7 mmol, 7%; *endo/exo* 89/11).

exo ¹H NMR (300 MHz, CD₂Cl₂) δ 6.21 – 6.04 (m, 2H), 4.17 (qd, J = 6.4, 3.2 Hz, 1H), 3.24 – 3.03 (m, 1H), 2.82 (dtq, J = 3.1, 1.5, 0.8 Hz, 1H), 2.59 (dt, J = 8.3, 1.3 Hz, 1H), 2.08 – 1.97 (m, 1H), 1.50 – 1.35 (m, 7H), 1.30 (d, J = 6.4 Hz, 3H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 177.4, 136.4, 134.9, 78.9, 51.6, 48.5, 48.2, 46.0, 45.6, 22.8.

endo ¹H NMR (300 MHz, CD₂Cl₂) δ 6.22 – 6.09 (m, 2H), 3.95 (qd, J = 6.5, 3.1 Hz, 1H), 3.26 – 2.97 (m, 3H), 2.67 – 2.54 (m, 1H), 1.57 – 1.46 (m, 1H), 1.39 – 1.29 (m, 1H), 1.25 (d, J = 6.5 Hz, 3H). 13C NMR (75 MHz, CDCl₃) δ 177.3, 137.6, 137.5, 80.7, 50.0, 48.9, 47.6, 46.3, 43.1, 23.2.

4. Semi continuous synthesis of the β-Angelica lactone CPD adduct

A 500 mL 2-neck round bottom flask was filled with dicyclopentadiene (100 mL) and iron(0) powder and equipped with a distillation setup. Cyclopentadiene was obtained by thermal cracking of its corresponding dimer at 180 °C and then condensed into a dropping funnel. 2 equivalents (84 mL, 67 g, 1.0 mol) were dropped over 10 hours into a 1 liter 3-necks round bottom flask containing the angelica lactone mixture (β-AL=90%; 50 g, 0.5 mol) and zinc(II) chloride (3.5 g, 0.03 mol, 0.05 eq) while heating up to 70 °C. Once the addition was complete, the reaction was stirred for another 10 hours and monitored by GC. After cooling down to room

temperature, acetone (80-150 ml) was added to precipitate the Lewis acid catalyst. The remaining cyclopentadiene and α -Angelica lactone was removed by vacuum distillation (50 °C/0.06 mbar) and the remaining cyclopentadiene dimers were precipitated by addition of ice-cold methanol (100 ml) followed by filtration. Solvent removal afforded the product as an orange liquid (69 g, 0.4 mol, 82% yield, *endo:exo* 89/11).

5. Screening of the DA-reaction with other dienes

Microwave-assisted reactions. In an oven-dried 10 mL reaction tube the angelica lactones mixture (β -AL=90%; 98 mg, 1 mmol), the desired solvent (if used, 2 mL) and catalyst (5 mol%) were added under argon. The diene (10 eq) was added subsequently while stirring the mixture, then the tube was placed in a microwave oven and heated at the desired temperature for the indicated time (Table S1).

Table S1 Screening of the reaction conditions for the DA-reaction between β-AL and different dienes

Entry	Substrate	Lewis Acid	Solvent	Temperature	Time	DAª
				[°C]	[min]	[%]
1	2,5-DMF ^b	-	-	60	30	0
2	2,5-DMF	$ZnCl_2$	-	60	30	0
3	2,5-DMF	Et ₃ AI / AICI ₃	-	90	30	0
4	β -Farnesene	$ZnCl_2$	-	60	30	0
5	β -Farnesene	AICI ₃	-	60	30	0
6	β -Farnesene	Et ₃ AI / AICI ₃	-	90	30	0
7	β -Farnesene	Et ₃ AI / AICI ₃	Toluene	110	90	0
8	Myrcene	$ZnCl_2$	-	60	30	< 2%
9	Myrcene	Et ₃ AI / AICI ₃	-	90	30	< 2%
10	Myrcene	Et ₃ AI / AICI ₃	Toluene	110	90	0
11	Myrcene	In(OTf)₃	-	70	60	0
12	Myrcene	Sm(OTf) ₃	-	70	60	0

13	Furan	ZnCl ₂	-	60	30	0
14	Furan	Et ₃ AI / AICI ₃	-	90	30	0
15	Furan	Et ₃ AI / AICI ₃	Toluene	110	90	0
16	Furan	$Yb(OTf)_3$	-	70	30	0
17	Furan	$Yb(OTf)_3$	-	130	30	0
18	Furfuryl alcohol	$ZnCl_2$	-	70	30	0
19	Furfuryl alcohol	$ZnCl_2$	-	130	30	0
20	Furfuryl alcohol	AICI ₃	-	70	30	0
21	Furfuryl alcohol	AICI ₃	-	130	30	0
22	Isoprene	$ZnCl_2$	-	70	30	0
23	Isoprene	$ZnCl_2$	-	130	30	0
24	Isoprene	AICI ₃	-	70	30	0
25	Isoprene	AICI ₃	-	130	30	0

^aGC conversion. ^b2,5-DMF = 2,5-dimethylfurane.

High temperature reactions. 4 mL glass vials equipped with magnetic stirring bar and PTFE septum were filled with the angelica lactones mixture (β-AL=90%; 98 mg, 1 mmol) and the diene (10 eq) under argon. The vials were then pierced with needles and placed in a 300 mL stainless steel autoclave, which was pressurised with 20 bar of nitrogen and heated up to 200 °C. The reaction was stirred for 16 hours, then cooled down to room temperature and the reaction mixture was filtered over a short path of silica and directly analysed by GC.

Isoprene/βAL. β-Angelica lactone (0.1 mL, 1.0 mmol, 1 eq) and isoprene (2.0 mL, 20 mmol, 20 eq) were added to a stainless steel autoclave and pressurized with 30 bar of nitrogen (to prevent isoprene evaporation). The reaction was stirred at 200 °C for 24 hours. The crude was purified by flash column chromatography (heptane/EtOAc 8:2). The desired product (as mixture of 2 regioisomers, each of them containing 2 diasteroisomers and 2 enantiomers) was obtained as a yellow oil (99.5 mg, 0.6 mmol, 60%).

¹H NMR (300 MHz, CDCl₃) δ 5.45 – 5.32 (m, 1H), 4.25 – 4.15 (m, 1H), 2.85 – 2.67 (m, 1H), 2.37 – 2.04 (m, 4H), 1.91 – 1.70 (m, 1H), 1.62 (dddt, J = 3.8, 2.4, 1.9, 0.9 Hz, 3H), 1.32 (dd, J = 6.4, 3.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 179.2, 179.1, 132.9, 132.4, 119.1, 118.8, 80.9, 80.9, 39.7, 38.6, 37.3, 36.3, 29.3, 26.9, 25.0, 23.7, 23.4, 22.6, 19.3, 19.2.

MS (EI): m/z calcd. for $[C_{10}H_{14}O_2]^+$: 166.1; found: 166.

Myrcene/βAL. β-Angelica lactone (0.1 mL, 1.0 mmol, 1 eq) and myrcene (1.7 mL, 20 mmol, 20 eq) were added to a SS autoclave and pressurized with 30 bar of nitrogen (to prevent isoprene evaporation). The reaction was stirred at 200 °C for 24 hours. The crude was purified by flash column chromatography (heptane/EtOAc 8:2). The desired product (as mixture of 2 regioisomers, each of them containing 2 diasteroisomers and 2 enantiomers) was obtained as a yellow oil (127 mg, 0.54 mmol, 54%).

MS (EI): m/z calcd. for $[C_{15}H_{22}O_2]^+$: 234.3; found: 234.

Farnesene/βAL. β-Angelica lactone (0.1 mL, 1.0 mmol, 1 eq) and β-farnesene (2.4 mL, 20 mmol, 20 eq) were added to a SS autoclave and pressurized with 30 bar of nitrogen (to prevent isoprene evaporation). The reaction was stirred at 200 °C for 24 hours. The crude was purified by flash-column chromatography (heptane/EtOAc 8:2). The desired product (as mixture of 2 regioisomers, each of them containing 2 diasteroisomers and 2 enantiomers) was obtained as a yellow oil (41.3 mg, 0.18 mmol, 18%).

MS (EI): m/z calcd. for $[C_{20}H_{30}O_2]^+$: 302.5; found: 302.

Table S2 Screening of the reaction conditions for the DA-reaction between β-AL and different dienes

Entry	Diene	Conversion	
		[%]	
1	2,5-DMF	-	
2	β-Farnesene	64 (18) ^b	
3	Myrcene	> 99 (54)	
4	Furane	-	
5	Furfuryl alcohol	-	
6	Isoprene	> 99 (60)	

^aGC Conversion. ^bIsolated yields after column chromatography (Heptane/Ethyl acetate 8:2) are reported in brackets.

6. Ring-opening metathesis polymerization (ROMP) of Cp/βAL adduct

Solvent screening. To a stirred solution of Grubbs II catalyst (4.7 mg, 0.006 mmol, 0.25 mol%) in the desired solvent (Table 3) the Cp/βAL adduct (0.2 mL, 2.2 mmol, 1 eq) was added under argon atmosphere. The reaction was stirred overnight. A few minutes after the addition, all the solutions turned opalescent and a white ish precipitate appeared, except for the reaction in DCM. The reaction mixtures were then concentrated *in vacuo* and washed several times with methanol (using DCM to re-dissolve the polymer). All the reaction afforded a white ish, gummy solid. A small portion of each sample was dissolved in a DMF/LiBr solution and analyzed by GPC.

- MTBE

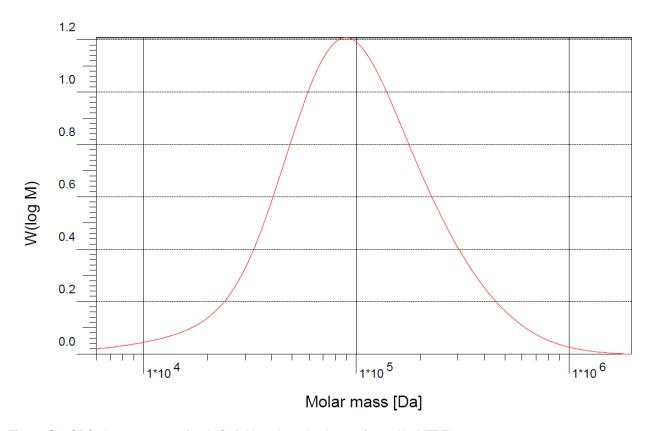


Figure S1. GPC chromatogram of *poly-*Cp/βAL; polymerization performed in MTBE.

$$\overline{M}_n = 67.8 \text{ kDa}; \overline{M}_w = 138 \text{ kDa}; D = 2.04$$

- 2-Methyl-THF

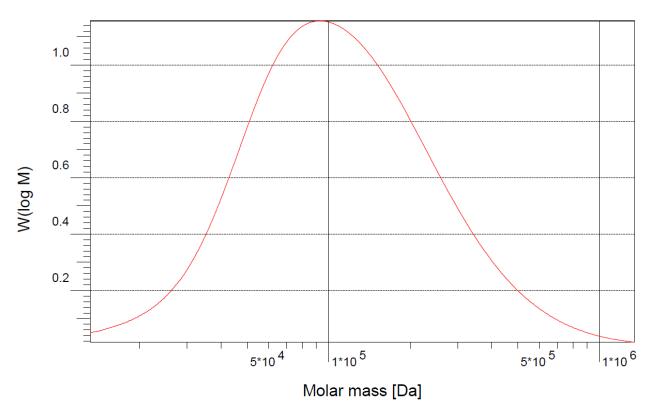


Figure S2. GPC chromatogram of *poly-*Cp/βAL; polymerization performed in 2-Me-THF.

$$\overline{M}_n$$
 = 80.6 kDa; \overline{M}_w = 154 kDa; D = 1.91

- EtOAc

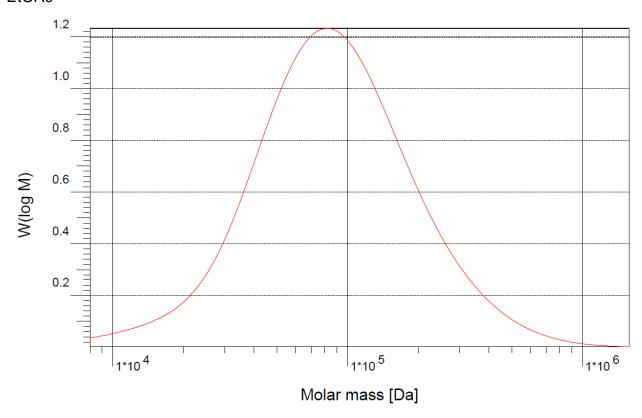
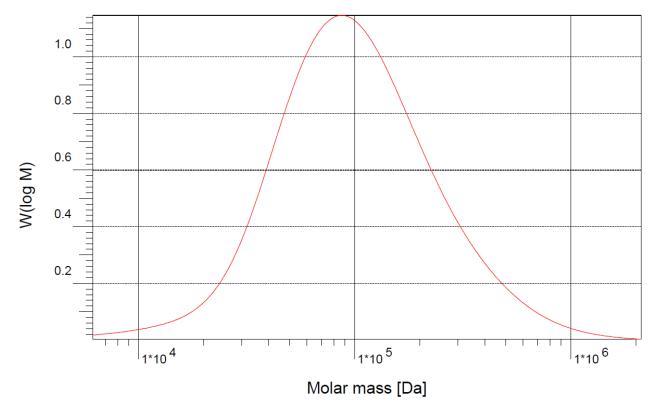



Figure S3. GPC chromatogram of poly-Cp/ β AL; polymerization performed in EtOAc.

$$\overline{M}_n$$
 = 64.1 kDa; \overline{M}_w = 118 kDa; D = 1.85

- MIBK

Figure S4. GPC chromatogram of *poly-*Cp/βAL; polymerization performed in MIBK.

$$\overline{M}_n$$
 = 70.9 kDa; \overline{M}_w = 146 kDa; D = 2.06

- DCM

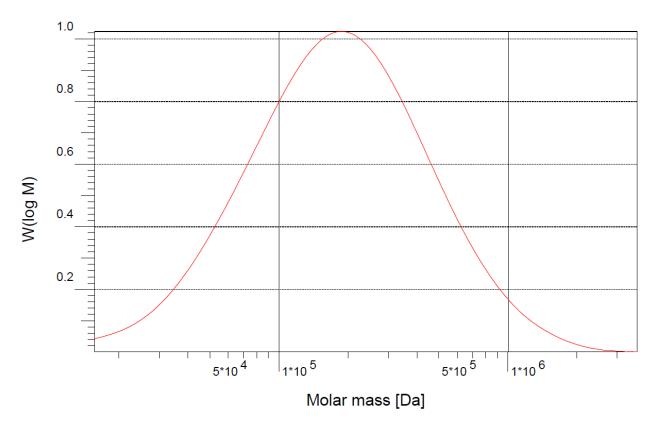
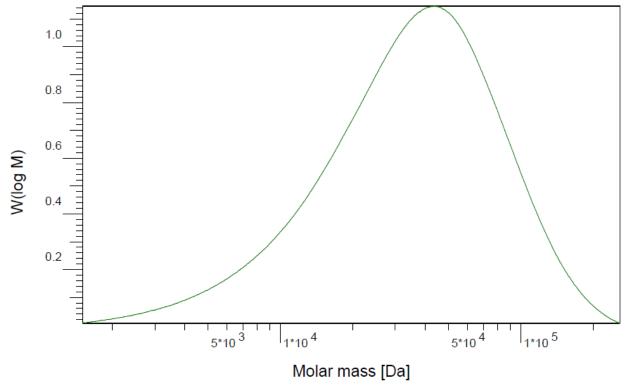
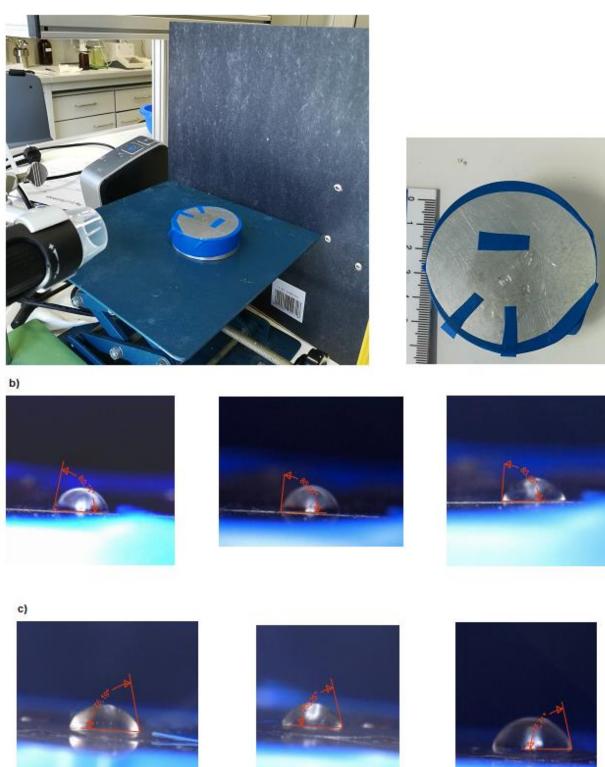


Figure S5. GPC chromatogram of *poly-*Cp/βAL; polymerization performed in DCM.

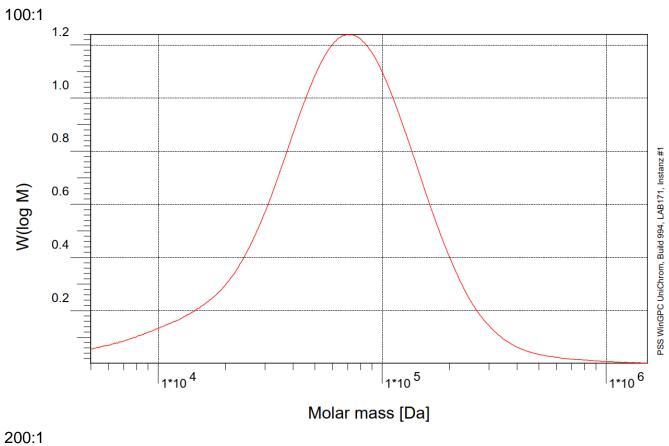
$$\overline{M}_n$$
 = 122 kDa; \overline{M}_w = 264 kDa; D = 2.17

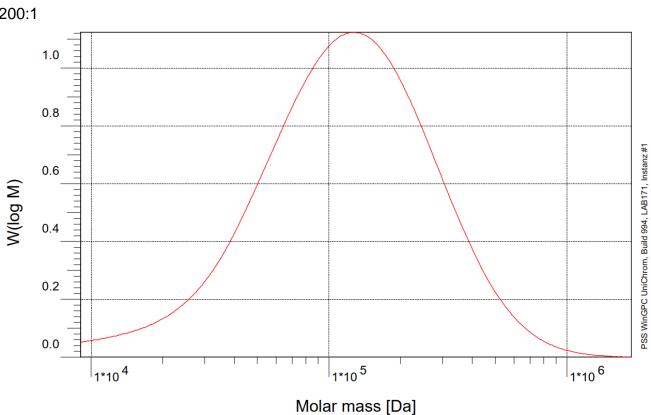
Poly-norbornene. To a stirred solution of Grubbs II catalyst (4.7 mg, 0.006 mmol, 0.25 mol%) in 2 mL of dichloromethane, norbornene (207 mg, 2.2 mmol, 1 eq) was added under argon atmosphere. The reaction was stirred for 5 hours. The reaction mixtures were then concentrated *in vacuo* and washed several times with methanol (using DCM to re-dissolve the polymer). All the reaction afforded a white ish, gummy solid. A small portion of each sample was dissolved in a THF and analyzed by GPC.



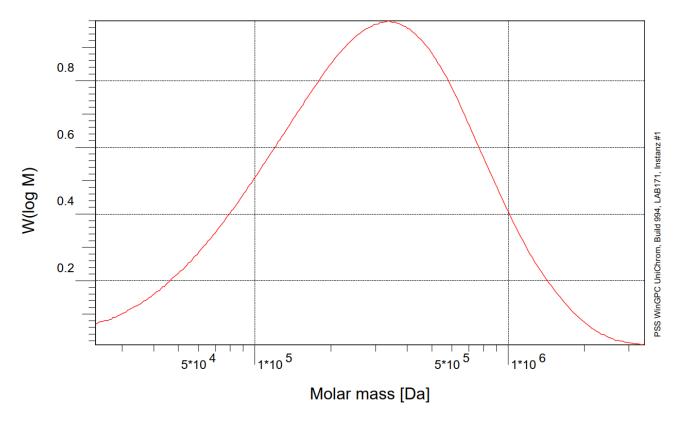

Figure S6. GPC chromatogram of *poly-*norbornene.

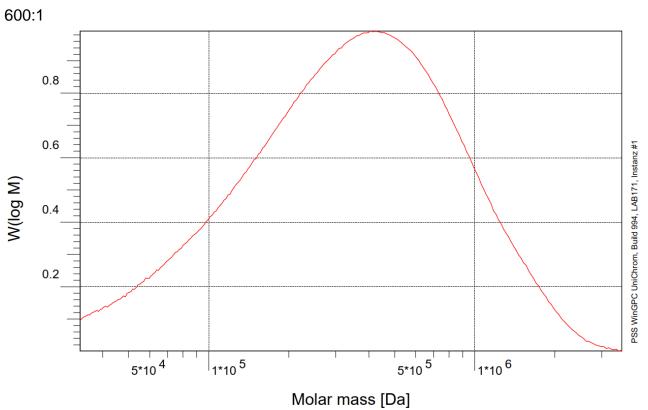
$$\overline{M}_n$$
 = 21.8 kDa; \overline{M}_w = 45.9 kDa; D = 2.11

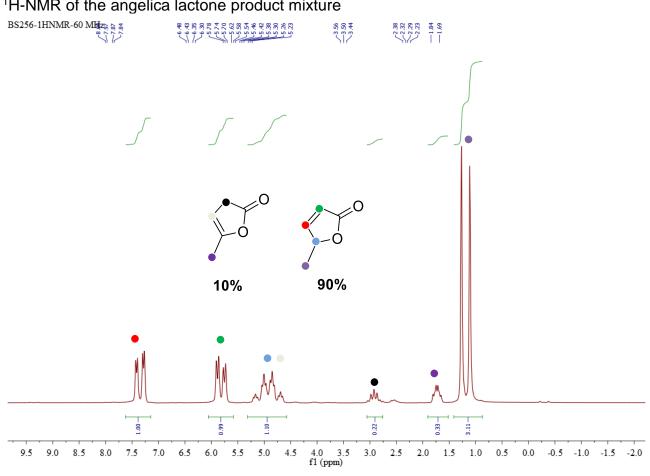

7. Contact angle measurements

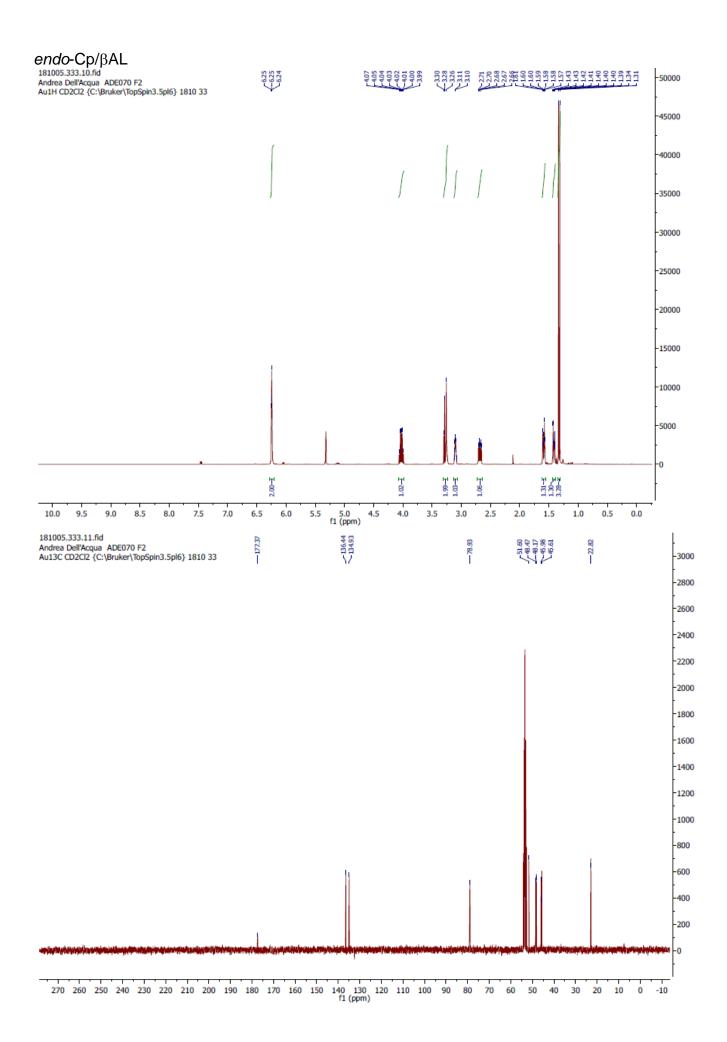

A film of the desired polymer (obtained by casting a solution of the polymer in dichloromethane on a Teflon mold and letting the solvent evaporate over 4 hours) was anchored to a stainless-steel flat surface (Figure S7-a). 10 μ L of distilled water were dropped on the polymer film using a Hamilton syringe. A picture of the drop was recorded using a DNT DigiMicro Profi digital microscope (Fig 7b. *poly*-norbornene, Fig. 7c. *poly*-Cp/ β AL). Contact angles were determined by measuring the angle using CorrelDraw software. The reported values are the average between 3 different measurements.

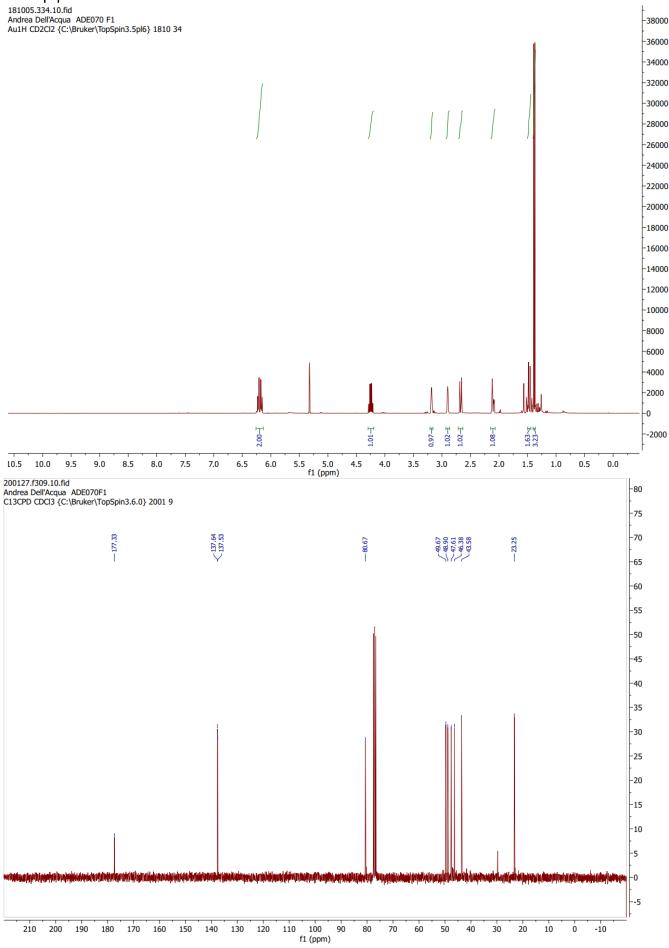
a)



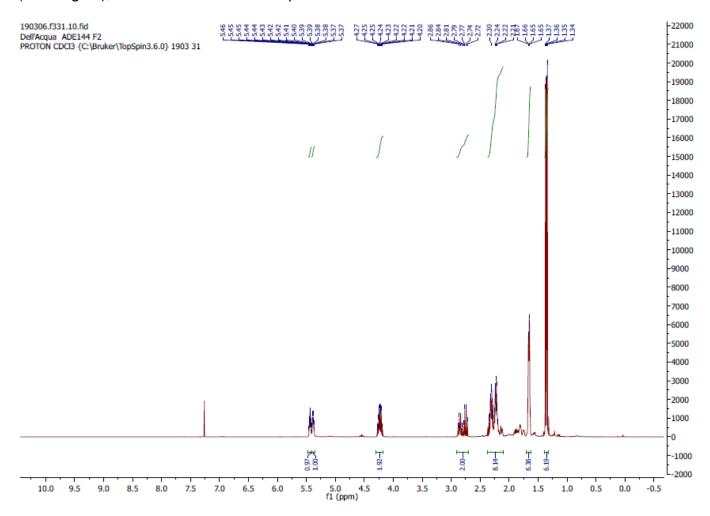

8. Experiments at different monomer / initiator ratios.

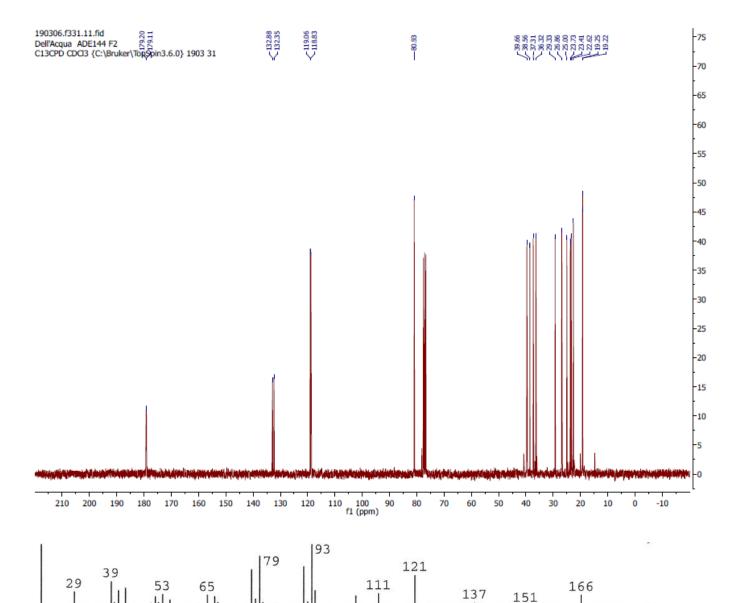

400:1

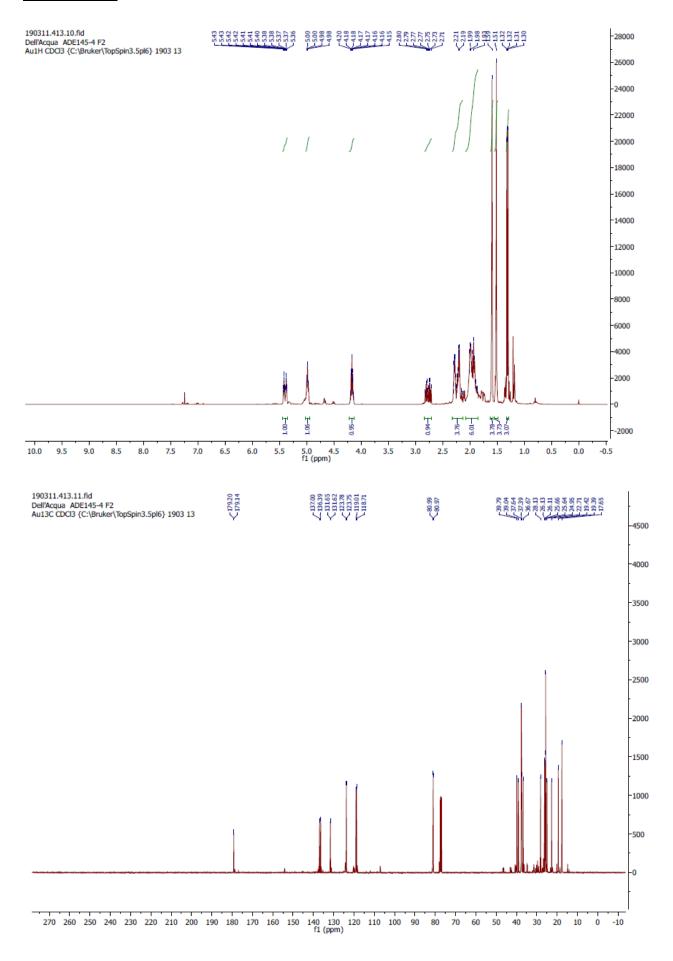


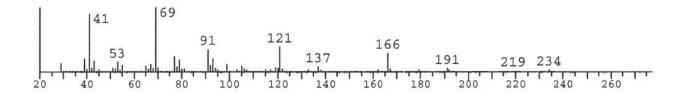

9. Spectral data

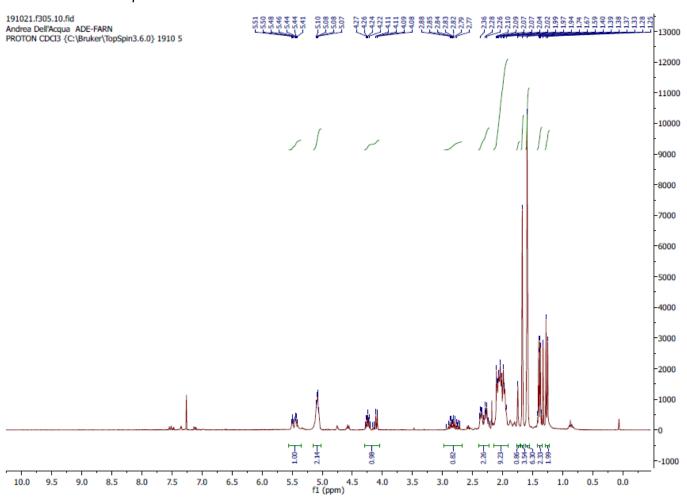
¹H-NMR of the angelica lactone product mixture

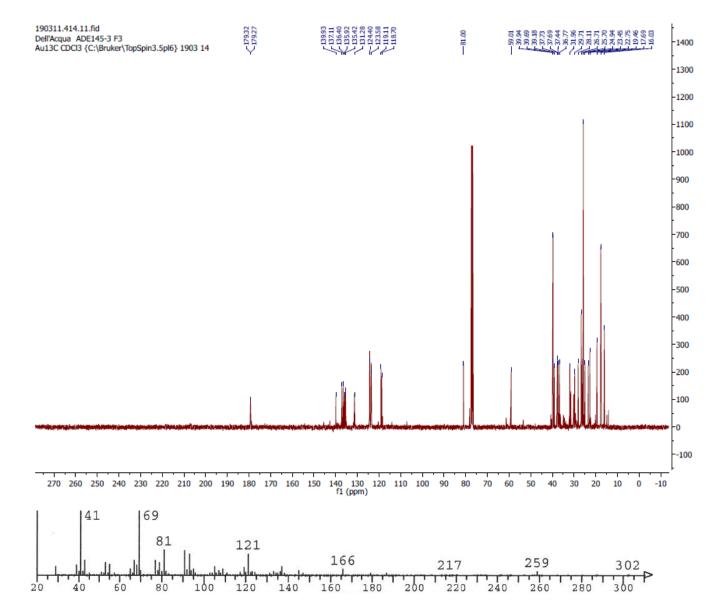


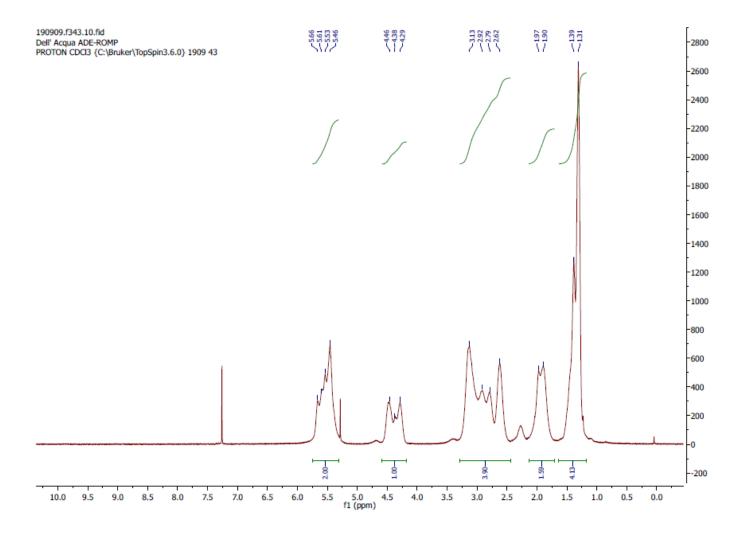

exo-Cp/βAL


Isoprene/βAL


Due to the co-presence of different regio- and stereoisomers, NMR data for the other DA adducts are not easily intelligible. NMR was used mainly to confirm the absence of the β AL (C=C signal), while ESI to confirm the product structure.




Myrcene/βAL



- Farnesene/βAL

- *poly*-Cp/βAL

10. TGA/DSC analysis

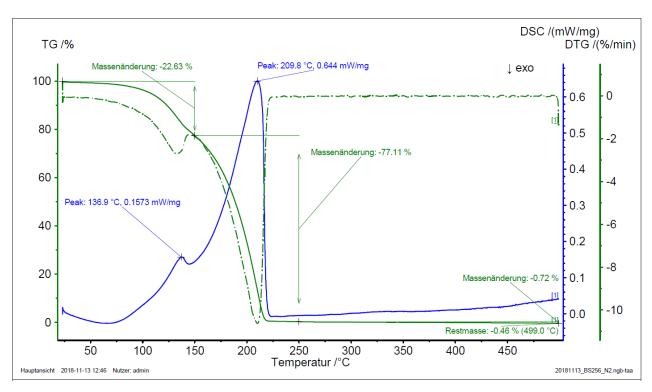


Figure S7 DSC-TG of the Cp/ β AL Diels-Alder adduct.

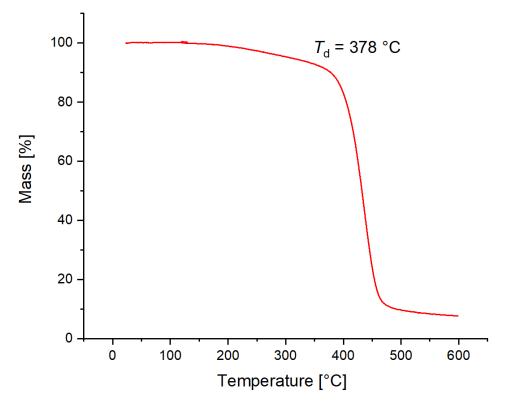


Figure S8 TGA of poly-Cp/ β AL. The onset of decomposition (T_d) was taken at 10% of mass loss.

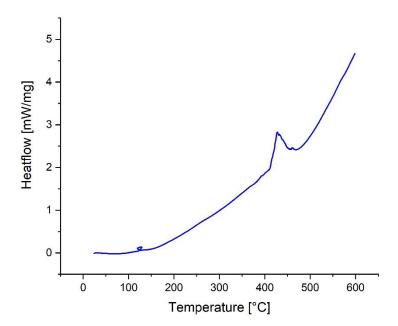


Figure S9 Corresponding DSC trace to Figure S8