SUPPORTING INFORMATION

Concise synthesis of α -amino cyclic boronates *via* multicomponent

coupling of salicylaldehydes, amines, and B₂(OH)₄

Wenbo Ming,^a Xiaocui Liu,^a Alexandra Friedrich,^a Johannes Krebs,^a Yudha P. Budiman,^{a,b} Mingming Huang,^a

Todd B. Marder*a

- ^a Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- ^b Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Jatinangor, Indonesia

E-mail: todd.marder@uni-wuerzburg.de

Table of Contents

I. General Information	S2
II. Experimental Procedures	S3
III. Compound Characterization	S4
IV. Mechanistic Studies	S19
V. NMR Spectra of Products	S26
VI. Single-crystal X-ray Diffraction Studies	S66
VII. References	S70

I. General Information

All reagents were purchased from Alfa-Aesar, Aldrich, TCI, ABCR, VWR, or Fluorochem, and were checked for purity by GC-MS and/or ¹H NMR spectroscopy and used as received. D₂O was purchased from Deutero GmbH, and CD₃OD was purchased from Sigma-Aldrich. Diboronic acid was purified by washing with dioxane following a reported method.¹

The removal of solvent was performed on a rotary evaporator *in vacuo* at a maximum temperature of 40 °C. GC-MS analyses were performed using an Agilent 7890A gas chromatograph (column: HP-5MS 5% phenyl methyl siloxane, 30 m, ϕ 0.25 mm, film 0.25 μ m; injector: 250 °C; oven: 40 °C (2 min), 40 °C to 280 °C (20 °C·min⁻¹); carrier gas: He (1.2 mL·min⁻¹)) equipped with an Agilent 5975C inert MSD with triple-axis detector operating in EI mode and an Agilent 7693A series auto sampler/injector. Elemental analyses were performed on a Leco CHNS-932 Elemental Analyzer. High-resolution mass spectra were recorded using a Thermo Fischer Scientific Exactive Plus Orbitrap MS system (ASAP, ESI or HESI probe). All NMR spectra were recorded at ambient temperature using Bruker DRX-300 (¹H, 300 MHz; ¹³C(¹H}, 75 MHz; ¹¹B, 96 MHz) or Bruker Avance 500 NMR (¹H, 500 MHz; ¹³C(¹H}, 125 MHz; ¹¹B, 160 MHz; ¹⁹F(¹H}, 471 MHz) spectrometers. ¹H NMR chemical shifts are reported relative to TMS and were referenced *via* residual proton resonances of the corresponding deuterated solvent (D₂O, 4.79 ppm; CD₃OD, 3.31 ppm; CDCl₃, 7.26 ppm), whereas ¹³C(¹H} NMR spectra are reported relative to TMS *via* the carbon signals of the deuterated solvent (CD₃OD, 49.00 ppm; CDCl₃, 77.16 ppm). ¹¹B NMR chemical shifts are quoted relative to BF₃·Et₂O as external standard. ¹⁹F(¹H} NMR chemical shifts are quoted relative to CFCl₃ as the external standard.

II. Experimental Procedures

General procedures for the preparation of boroxines (Table 1 and Scheme 3).

In a 10 mL reaction tube equipped with a magnetic stirring bar, MeCN (2 mL), salicylaldehyde **1** (0.5 mmol), amine **2** (0.5 mmol, 1.0 equiv) and $B_2(OH)_4$ (0.75 mmol, 1.5 equiv) were added in this order. The reaction mixture was stirred at room temperature overnight, then filtred through filtre paper and washed with MeCN (10 mL). The product was dried under vacuum.

Preparation of 4f (Scheme 3).

In a 10 mL reaction tube equipped with a magnetic stirring bar, dimethylamine hydrochloride **2f** (0.5 mmol) and NaHCO₃ (0.5 mmol, 1.0 equiv) were dissolved in 2 mL of MeCN. Then, salicylaldehyde **1a** (0.5 mmol, 1.0 equiv) was added and the reaction was stirred for 30 min. After filtration using filtre paper, a clear yellow solution was obtained. To this filtrate, $B_2(OH)_4$ (0.75 mmol, 1.5 equiv) was added and the reaction the reaction mixture was added at room temperature overnight, then filtred through filtre paper and washed with MeCN (10 mL). The product was dried under vacuum.

Experimental procedure for the synthesis of 4a on a gram scale (10 mmol).

In a 25 mL reaction tube equipped with a magnetic stirring bar, MeCN (10 mL), salicylaldehyde **1a** (10 mmol, 1.221 g), morpholine **2a** (1.0 equiv, 10 mmol, 0.871 g) and B₂(OH)₄ (1.5 equiv, 15 mmol, 1.345 g) were added in this order. The reaction mixture was stirred at room temperature overnight, then filtered through filter paper and washed with MeCN (30 mL). The product **4a** was obtained as a white solid (2.791 g, 91%).

General procedures for the preparation of benzoxaborole-derived α -amino cyclic boronates.

In a 10 mL reaction tube equipped with a magnetic stirring bar, EtOH (2 mL), salicylaldehyde **1** (0.5 mmol), amine **2** (0.5 mmol, 1.0 equiv) and $B_2(OH)_4$ (0.75 mmol, 1.5 equiv) were added in this order. The reaction mixture was stirred at room temperature for 1 h. 1N HCl_{aq} (2 mL) was added to the reaction mixture, and the resulting solution was stirred for 15 min. The reaction mixture was extracted with Et₂O (2 x 5 mL) to remove impurities. The aqueous solution was evaporated to dryness to obtain a white residue, which was then dissolved in CH₂Cl₂ (5 mL). Removal of CH₂Cl₂ under vacuum gave the product.

III. Compound Characterization

4',6'-dihydroxy-3-(morpholino-4-ium)-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4a, was isolated as a white solid (143 mg, 93%), m.p. = 223 °C.

¹**H NMR** (300 MHz, D₂O): δ = 7.42 (d, *J* = 8 Hz, 1H), 7.31 (dd, *J* = 8, 8 Hz, 1H), 6.88 (dd, *J* = 8, 8 Hz, 1H), 6.79 (d, *J* = 8 Hz, 1H), 4.08 (d, *J* = 14 Hz, 1H), 4.03 (d, *J* = 15 Hz, 1H), 3.90-3.69 (m, 2H), 3.54-3.29 (m, 3H), 3.20 (s, 1H), 3.17-3.03 (m, 1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (75 MHz, D₂O): *δ* = 162.8, 131.1, 130.4, 123.5, 118.6, 112.4, 64.4, 64.2, 60.7 (v br), 50.8, 48.9 ppm.

¹¹**B NMR** (96 MHz, D₂O): *δ* = 19.4, 6.9 ppm.

HRMS (ESI neg) *m/z*: [*M*–H]⁻ Calcd for C₁₁H₁₅B₃NO₇⁻ 306.1133; found: 306.1144.

Elem. Anal. Calcd (%) for C₁₁H₁₆B₃NO₇: C 43.08, H 5.26, N 4.57; found: C 43.02, H 5.56, N 4.57.

4',6'-dihydroxy-3-(piperidin-1-ium-1-yl)-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4b was isolated as a white solid (134 mg, 88%), m.p. = 209 °C.

¹**H NMR** (300 MHz, D₂O): δ = 7.41 (d, *J* = 8 Hz, 1H), 7.29 (ddd, *J* = 8, 8, 1 Hz, 1H), 6.87 (ddd, *J* = 8, 8, 1 Hz, 1H), 6.77 (d, *J* = 8 Hz, 1H), 3.47-3.28 (m, 2H), 3.21 (ddd, *J* = 13, 13, 3 Hz, 1H), 3.12 (s, 1H), 2.79-2.59 (m, 1H), 2.02-1.55 (m, 5H), 1.47-1.23 (m, 1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (75 MHz, D₂O): δ = 162.7, 130.7, 130.3, 124.4, 118.5, 112.3, 60.1 (v br), 52.7, 50.0,

23.6, 23.3, 21.4 ppm.

¹¹**B NMR** (96 MHz, D₂O): *δ* = 19.4, 6.9 ppm.

HRMS (ESI neg) *m/z*: [*M*–H]⁻ Calcd for C₁₂H₁₇B₃NO₆⁻ 304.1341; found: 304.1351.

Elem. Anal. Calcd (%) for C₁₂H₁₈B₃NO₆: C 47.30, H 5.95, N 4.60; found: C 47.37, H 5.96, N 4.66.

4',6'-dihydroxy-3-(pyrrolidin-1-ium-1-yl)-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4c was isolated as a white solid (119 mg, 82%), m.p. = 230 °C.

¹**H NMR** (300 MHz, D₂O): δ = 7.42 (dd, *J* = 8, 2 Hz, 1H), 7.27 (ddd, *J* = 8, 8, 2 Hz, 1H), 6.85 (ddd, *J* = 8, 8, 1 Hz, 1H), 6.77 (d, *J* = 8 Hz, 1H), 3.71-3.57 (m, 1H), 3.57-3.45 (m, 1H), 3.30 (s, 1H), 3.28-3.13 (m, 1H), 3.13-2.96 (m, 1H), 2.24-1.44 (m, 4H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (75 MHz, D₂O): *δ* = 162.3, 130.6, 129.7, 125.7, 118.4, 112.3, 57.2 (v br), 53.3, 51.8, 22.9, 22.6 ppm.

¹¹**B NMR** (96 MHz, D₂O): *δ* = 19.4, 7.0 ppm.

HRMS (ESI neg) *m/z*: [*M*–H]⁻ Calcd for C₁₁H₁₅B₃NO₆⁻ 290.1184; found: 290.1196.

Elem. Anal. Calcd (%) for C₁₁H₁₆B₃NO₆: C 45.45, H 5.55, N 4.82; found: C 45.25, H 5.36, N 4.49.

3-(dibenzylammonio)-4',6'-dihydroxy-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4d was isolated as a white solid (148 mg, 71%), m.p. = 226 °C.

¹**H NMR** (300 MHz, CD₃OD): δ = 7.56-7.31 (m, 9H), 7.29-7.16 (m, 3H), 6.85-6.72 (m, 2H), 4.40-4.13 (m, 3H), 3.77-3.47 (m, 2H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with CD₃OD.

¹³C{¹H} NMR (75 MHz, CD₃OD): δ = 166.6, 133.2, 132.9, 132.1, 131.5 (2C), 131.3 (2C), 130.7(2C), 130.6, 130.4 (4C), 125.0, 119.2, 113.7, 57.3, 57.1 ppm. The carbon atom directly attached to boron was not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (96 MHz, CD₃OD): δ = 18.4, 7.5 ppm.

HRMS (ESI neg) *m/z*: [*M*–H]⁻ Calcd for C₂₁H₂₁B₃NO₆⁻ 416.1654; found: 416.1668.

Elem. Anal. Calcd (%) for C₂₁H₂₂B₃NO₆: C 60.51, H 5.32, N 3.36; found: C 60.38, H 5.76, N 3.54.

3-(benzyl(methyl)ammonio)-4',6'-dihydroxy-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4e was isolated as a white solid (111 mg, 65%), m.p. = 163 °C.

¹**H NMR** (300 MHz, D₂O) (mixture of diastereomers, dr = 55:45):

 δ (major diastereomer) = 7.56–7.39 (m, 6H), 7.33 (dd, *J* = 8, 8 Hz, 1H), 6.96-6.87 (m, 1H), 6.82 (d, *J* = 8 Hz, 1H), 4.34 (d, *J* = 13 Hz, 1H), 4.18 (d, *J* = 13 Hz, 1H), 3.37 (s, 1H), 2.66 (s, 3H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

 δ (minor diastereomer) = 7.56–7.39 (m, 6H), 7.32 (dd, *J* = 8, 8 Hz, 1H), 6.96-6.87 (m, 1H), 6.82 (d, *J* = 8 Hz, 1H), 4.48 (d, *J* = 13 Hz, 1H), 3.60 (d, *J* = 13 Hz, 1H), 3.35 (s, 1H), 2.71 (s, 3H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (75 MHz, D₂O) (mixture of diastereomers, dr = 55:45):

δ (major diastereomer) = 162.8, 131.2, 131.0, 130.6 (2C), 130.0, 129.6, 129.1 (2C), 124.7, 118.7, 112.5, 59.6 (v br), 56.3, 37.5 ppm.

 δ (minor diastereomer) = 162.9, 131.2, 131.0, 130.5 (2C), 130.0, 129.5, 129.0 (2C), 124.4, 118.6,

112.5, 59.6 (v br), 57.8, 38.6 ppm.

¹¹**B NMR** (96 MHz, D₂O) (mixture of diastereomers, dr = 55:45): $\delta = 19.4$, 7.0 ppm.

HRMS (ESI neg) *m/z*: [*M*–H]⁻ Calcd for C₁₅H₁₇B₃NO₆⁻ 340.1341; found: 340.1353.

Elem. Anal. Calcd (%) for C₁₅H₁₈B₃NO₆: C 52.87, H 5.32, N 4.11; found: C 52.84, H 5.33, N 4.12.

3-(dimethylammonio)-4',6'-dihydroxy-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4f was isolated as a white solid (104 mg, 79%), m.p. = 410 °C.

¹**H NMR** (500 MHz, D₂O): δ = 7.43 (d, *J* = 8 Hz, 1H), 7.31 (ddd, *J* = 8, 8, 1 Hz, 1H), 6.89 (ddd, *J* = 8, 8, 1 Hz, 1H), 6.79 (d, *J* = 8 Hz, 1H), 3.21 (s, 1H), 2.83 (s, 3H), 2.67 (s, 3H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (126 MHz, D₂O): δ = 162.7, 130.9, 130.0, 124.5, 118.6, 112.4, 60.4 (v br), 41.9, 39.9 ppm.

¹¹**B NMR** (160 MHz, D₂O): *δ* = 19.5, 7.0 ppm.

HRMS (ESI neg) *m/z*: [*M*–H]⁻ Calcd for C₉H₁₃B₃NO₆⁻ 264.1028; found: 264.1038.

Elem. Anal. Calcd (%) for C₉H₁₄B₃NO₆: C 40.85, H 5.33, N 5.29; found: C 40.71, H 5.39, N 5.17.

3-(diethylammonio)-4',6'-dihydroxy-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4g was isolated as a white solid (123 mg, 84%), m.p. = 230 °C.

¹**H NMR** (300 MHz, D₂O): δ = 7.39 (d, *J* = 8 Hz, 1H), 7.28 (ddd, *J* = 8, 8, 1 Hz, 1H), 6.87 (ddd, *J* = 8, 8, 1 Hz, 1H), 6.78 (d, *J* = 8 Hz, 1H), 3.45 (s, 1H), 3.39-2.98 (m, 3H), 2.97–2.80 (m, 1H), 1.34-1.25 (m, 6H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (75 MHz, D₂O): *δ* = 162.7, 130.6, 129.6, 124.8, 118.6, 112.3, 54.5 (v br), 46.9, 46.9, 10.1, 9.7 ppm.

¹¹**B NMR** (96 MHz, D₂O): δ = 19.4, 7.0 ppm.

HRMS (ESI neg) *m*/*z*: [*M*–H]⁻ Calcd for C₁₁H₁₇B₃NO₆⁻ 292.1341; found: 292.1352.

Elem. Anal. Calcd (%) for C₁₁H₁₈B₃NO₆: C 45.14, H 6.20, N 4.79; found: C 45.15, H 6.33, N 4.48.

3-(dipropylammonio)-4',6'-dihydroxy-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4h was isolated as a white solid (115 mg, 72%), m.p. = 130 °C.

¹**H NMR** (300 MHz, D₂O): δ = 7.39 (d, *J* = 8 Hz, 1H), 7.28 (dd, *J* = 8, 8 Hz, 1H), 6.86 (dd, *J* = 8, 8 Hz, 1H), 6.78 (d, *J* = 8 Hz, 1H), 3.44 (s, 1H), 3.31-2.92 (m, 3H), 2.87-2.66 (m, 1H), 1.89-1.59 (m, 4H), 0.98-0.81 (m, 6H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (75 MHz, D₂O): δ = 162.7, 130.7, 129.6, 124.9, 118.6, 112.3, 56.2 (v br), 54.2, 53.9, 18.8.6, 18.2, 10.2, 10.2 ppm.

¹¹**B NMR** (96 MHz, D₂O): *δ* = 19.4, 7.0 ppm.

HRMS (ESI neg) *m/z*: [*M*–H]⁻ Calcd for C₁₃H₂₁B₃NO₆⁻ 320.1654; found: 320.1658.

Elem. Anal. Calcd (%) for C₁₃H₂₂B₃NO₆: C 48.68, H 6.91, N 4.37; found: C 48.45, H 6.94, N 4.28.

4',6'-dihydroxy-6-methoxy-3-(morpholino-4-ium)-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4i was isolated as a white solid (150 mg, 89%), m.p. = 262 °C.

¹**H NMR** (300 MHz, D₂O): δ = 7.07 (d, *J* = 3 Hz, 1H), 6.95 (dd, *J* = 9, 3 Hz, 1H), 6.73 (d, *J* = 9 Hz, 1H), 4.08 (d, *J* = 14 Hz, 1H), 4.03 (d, *J* = 14 Hz, 1H), 3.81-3.79 (m, 5H), 3.50-3.31 (m, 3H), 3.18 (s, 1H), 3.16–3.03 (m, 1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (75 MHz, D₂O): δ = 157.3, 151.4, 124.0, 116.9, 116.2, 112.5, 64.4, 64.2, 60.4 (v br), 56.3, 50.7, 48.9 ppm.

¹¹**B NMR** (96 MHz, D_2O): δ = 19.3, 6.9 ppm.

HRMS (ESI neg) *m/z*: [*M*–H]⁻ Calcd for C₁₂H₁₇B₃NO₈⁻ 336.1239; found: 336.1240.

Elem. Anal. Calcd (%) for C₁₂H₁₈B₃NO₈: C 42.81, H 5.39, N 4.16; found: C 42.62, H 5.49., N 3.98.

4',6'-dihydroxy-5-methyl-3-(morpholino-4-ium)-3H-spiro[benzo[d][1,2]oxaborole-2,2'-[1.3.5.2.4.6]trioxatriborinan]-2-uide

4j was isolated as a white solid (135 mg, 84%), m.p. = 219 °C.

¹**H NMR** (500 MHz, D₂O): δ = 7.27 (s, 1H), 7.15 (d, *J* = 8 Hz, 1H), 6.71 (d, *J* = 8 Hz, 1H), 4.10 (d, *J* = 13 Hz, 1H), 4.04 (d, *J* = 13 Hz, 1H), 3.91-3.73 (m, 2H), 3.55-3.31 (m, 3H), 3.19 (s, 1H), 3.15-3.03 (m, 1H), 2.28 (s, 3H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (126 MHz, D₂O): δ = 160.5, 131.3, 130.7, 128.2, 123.4, 112.1, 64.4, 64.2, 60.9 (v br), 50.9, 48.9, 19.7 ppm.

¹¹**B NMR** (160 MHz, D₂O): *δ* = 19.4, 6.9 ppm.

HRMS (APCI neg) *m*/*z*: [*M*–H]⁻ Calcd for C₁₂H₁₇B₃NO₇⁻ 320.1290; found: 320.1271.

Elem. Anal. Calcd (%) for C₁₂H₁₈B₃NO₇: C 44.94, H 5.66, N 4.37; found: C 44.79, H 5.95., N 4.34.

5-fluoro-4',6'-dihydroxy-3-(morpholino-4-ium)-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4k was isolated as a white solid (122 mg, 75%), m.p. = 295 °C.

¹**H NMR** (500 MHz, D₂O): δ = 7.20 (ddd, *J* = 9, 3, 1 Hz, 1H), 7.05 (ddd, *J* = 9, 9, 3 Hz, 1H), 6.73 (dd, *J* = 9, 5 Hz, 1H), 4.13-4.10 (m, 2H), 3.85–3.77 (m, 2H), 3.51–3.33 (m, 3H), 3.20 (s, 1H), 3.15 (m, 1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (126 MHz, D₂O): δ = 158.9 (d, J = 2 Hz), 155.5 (d, J = 234 Hz), 124.0 (d, J = 8 Hz),

117.2 (d, J = 24 Hz), 116.5 (d, J = 23 Hz), 112.5 (d, J = 9 Hz), 64.4, 64.1, 60.1 (v br), 50.7, 49.0.

¹¹**B NMR** (160 MHz, D₂O): *δ* = 19.4, 7.1 ppm.

¹⁹**F**{¹**H**} **NMR** (471 MHz, D₂O): *δ* = -126.3 ppm.

HRMS (ESI neg) *m*/*z*: [*M*–H]⁻ Calcd for C₁₁H₁₄B₃FNO₇⁻ 324.1039; found: 324.1038.

Elem. Anal. Calcd (%) for C₁₁H₁₅B₃FNO₇: C 40.69, H 4.66, N 4.31; found: C 40.58, H 4.67, N 4.30.

6-bromo-4',6'-dihydroxy-3-(morpholino-4-ium)-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4I was isolated as a white solid (148 mg, 77%), m.p. = 272 °C.

¹**H NMR** (300 MHz, D₂O): δ = 7.57 (d, *J* = 2 Hz, 1H), 7.42 (dd, *J* = 9, 2 Hz, 1H), 6.70 (d, *J* = 9 Hz, 1H), 4.16-3.98 (m, 2H), 3.91-3.69 (m, 2H), 3.53-3.26 (m, 3H), 3.19 (s, 1H), 3.18-3.04 (m, 1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (126 MHz, D₂O): δ = 162.0, 133.6, 132.7, 125.7, 114.2, 109.3, 64.3, 64.1, 60.3 (v br), 50.8, 49.0 ppm.

¹¹**B NMR** (96 MHz, D₂O): *δ* = 19.4, 7.0 ppm.

HRMS (ESI neg) *m/z*: [*M*–H]⁻ Calcd for C₁₁H₁₄B₃BrNO₇⁻ 384.0238; found: 384.0245.

Elem. Anal. Calcd (%) for C₁₁H₁₅B₃BrNO₇: C 34.27, H 3.92, N 3.63; found: C 34.19, H 3.94., N 3.59.

4',6'-dihydroxy-6-methoxy-3-(morpholino-4-ium)-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4m was isolated as a white solid (140 mg, 83%), m.p. = 260 °C.

¹**H NMR** (300 MHz, D₂O): δ = 7.33 (d, *J* = 8 Hz, 1H), 6.48 (dd, *J* = 8, 3 Hz, 1H), 6.39 (d, *J* = 3 Hz, 1H), 4.17-3.95 (m, 2H), 3.86-3.72 (m, 5H), 3.49-3.26 (m, 3H), 3.14 (s, 1H), 3.06 (ddd, *J* = 13, 13, 4 Hz,

1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D_2O .

¹³C{¹H} NMR (126 MHz, D₂O): δ = 164.3, 161.5, 131.0, 116.2, 104.4, 98.2, 64.4, 64.2, 60.3 (v br), 55.3, 50.8, 48.7 ppm.

¹¹**B NMR** (160 MHz, D₂O): *δ* = 19.4, 7.2 ppm.

HRMS (ESI neg) *m*/*z*: [*M*–H]⁻ Calcd for C₁₂H₁₇B₃NO₈⁻ 336.1239; found: 336.1234.

Elem. Anal. Calcd (%) for C₁₂H₁₈B₃NO₈: C 42.81, H 5.39, N 4.16; found: C 42.62, H 5.45., N 4.11.

4',6'-dihydroxy-7-methoxy-3-(morpholino-4-ium)-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4n was isolated as a white solid (121 mg, 72%), m.p. = 273 °C.

¹**H NMR** (300 MHz, D₂O): δ = 7.06 (d, *J* = 8 Hz, 1H), 7.02 (d, *J* = 8 Hz, 1H), 6.83 (dd, *J* = 8, 8 Hz, 1H), 4.07 (d, *J* = 14 Hz, 1H), 4.02 (d, *J* = 15 Hz, 1H), 3.92-3.72 (m, 5H), 3.52-3.31 (m, 3H), 3.20 (s, 1H), 3.08 (ddd, *J* = 13, 13, 4 Hz, 1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (75 MHz, D₂O): *δ* = 152.3, 145.9, 124.0, 122.6, 118.2, 113.6, 64.4, 64.1, 61.1 (v br), 55.7, 50.8, 48.9 ppm.

¹¹**B NMR** (96 MHz, D₂O): *δ* = 19.4, 7.1 ppm.

HRMS (ESI neg) *m*/*z*: [*M*–H]⁻ Calcd for C₁₂H₁₇B₃NO₈⁻ 336.1239; found: 336.1252.

Elem. Anal. Calcd (%) for C₁₂H₁₈B₃NO₈: C 42.81, H 5.39, N 4.16; found: C 42.71, H 5.36, N 4.09.

7-fluoro-4',6'-dihydroxy-3-(morpholino-4-ium)-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4o was isolated as a white solid (133 mg, 82%), m.p. = 310 °C.

¹**H NMR** (500 MHz, D₂O): δ = 7.22 (d, *J* = 8 Hz, 1H), 7.14 (ddd, *J* = 11, 8, 1 Hz, 1H), 6.82 (ddd, *J* = 13, 8, 5 Hz, 1H), 4.12–4.00 (m, 2H), 3.86–3.75 (m, 2H), 3.50–3.35 (m, 3H), 3.24 (s, 1H), 3.12 (ddd, *J* = 12, 12, 4 Hz, 1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (126 MHz, D₂O): δ = 150.0 (d, *J* = 11 Hz), 149.6 (d, *J* = 241 Hz), 126.5 (d, *J* = 5 Hz), 125.7 (d, *J* = 4 Hz), 118.2 (d, *J* = 6 Hz), 117.2 (d, *J* = 17 Hz), 64.4, 64.1, 60.2 (v br), 50.8, 49.0 ppm. ¹¹B NMR (160 MHz, D₂O): δ = 19.4, 7.4 ppm.

¹⁹**F**{¹**H**} **NMR** (471 MHz, D₂O): *δ* = –139.1 ppm.

HRMS (ESI neg) *m/z*: [*M*–H]⁻ Calcd for C₁₁H₁₄B₃FNO₇⁻ 324.1039; found: 324.1040.

Elem. Anal. Calcd (%) for C₁₁H₁₅B₃FNO₇: C 40.69, H 4.66, N 4.31; found: C 40.58, H 4.73, N 4.32.

5,7-di-tert-butyl-4',6'-dihydroxy-3-(morpholino-4-ium)-3H-spiro[benzo[d][1,2]oxaborole-2,2'-

[1,3,5,2,4,6]trioxatriborinan]-2-uide

4p was isolated as a white solid (142 mg, 68%), m.p. = 211 °C.

¹**H NMR** (300 MHz, CD₃OD): δ = 7.20-7.14 (m, 2H), 4.02-3.89 (m, 2H), 3.75-3.62 (m, 2H), 3.38-3.22 (m, 3H), 3.13 (s, 1H), 3.12-3.02 (m, 1H), 1.40 (s, 9H), 1.28 (s, 9H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with CD₃OD.

¹³C{¹H} NMR (75 MHz, CD₃OD): δ = 162.9, 140.0, 134.4, 125.0, 124.9, 124.2, 65.8, 65.6, 62.9 (v br), 52.5, 51.0, 35.4, 35.1, 32.4 (3C), 29.9 (3C) ppm.

¹¹**B NMR** (96 MHz, CD₃OD): *δ* = 18.5, 7.5 ppm.

HRMS (ESI neg) *m*/*z*: [*M*–H]⁻ Calcd for C₁₉H₃₁B₃NO₇⁻ 418.2385; found: 418.2391.

4-(2-hydroxy-2,3-dihydrobenzo[d][1,2]oxaborol-3-yl)morpholin-4-ium chloride

5a was isolated as a white solid (101 mg, 79%), m.p. = 179 °C.

¹**H NMR** (300 MHz, D₂O): δ = 7.40 (d, *J* = 8 Hz, 1H), 7.33 (dd, *J* = 8, 8 Hz, 1H), 6.93 (dd, *J* = 8, 8 Hz, 1H), 6.86 (d, *J* = 8 Hz, 1H), 4.14-3.90 (m, 2H), 3.88–3.66 (m, 2H), 3.53 (s, 1H), 3.49–3.22 (m, 3H), 3.04 (dd, *J* = 13, 13 Hz, 1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with D₂O.

¹³C{¹H} NMR (75 MHz, D₂O): δ = 160.2, 131.5 (2C), 121.3, 119.7, 113.7, 64.1, 64.0, 59.1 (v br), 51.3, 49.3 ppm.

¹¹**B NMR** (96 MHz, D_2O): δ = 14.3 ppm.

HRMS (ESI pos) *m/z*: [*M*–Cl]⁺ Calcd for C₁₁H₁₅BNO₃⁺ 220.1140; found: 220.1136.

Elem. Anal. Calcd (%) for C₁₁H₁₅BCINO₃: C 51.71, H 5.92, N 5.48; found: C 51.68, H 5.99, N 5.42.

1-(2-hydroxy-2,3-dihydrobenzo[d][1,2]oxaborol-3-yl)piperidin-1-ium chloride

5b was isolated as a white solid (95 mg, 75%), m.p. = 174 °C.

¹**H NMR** (300 MHz, CD₃OD): δ = 7.35 (dd, *J* = 8, 2 Hz, 1H), 7.23 (ddd, *J* = 8, 8, 2 Hz, 1H), 6.91-6.76 (m, 2H), 3.60 (s, 1H), 3.42 (d, *J* = 13 Hz, 1H), 3.38 (d, *J* = 13 Hz, 1H), 3.22-3.02 (m, 1H), 2.86-2.54 (m, 1H), 1.95-1.62 (m, 5H), 1.54-1.24 (m, 1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with CD₃OD.

¹³C{¹H} NMR (75 MHz, CD₃OD): *δ* = 162.5, 132.2, 132.1, 122.4, 120.3, 114.9, 58.8 (v br), 54.3, 51.9, 24.7, 24.5, 23.0 ppm.

¹¹**B NMR** (96 MHz, CD₃OD): δ = 16.3 ppm.

HRMS (ESI pos) *m/z*: [*M*–CI]⁺ Calcd for C₁₂H₁₇BNO₂⁺ 218.1347; found: 218.1342.

1-(2-hydroxy-2,3-dihydrobenzo[d][1,2]oxaborol-3-yl)pyrrolidin-1-ium chloride

5c was isolated as a white solid (99 mg, 83%), m.p. = $172 \degree C$.

¹**H NMR** (300 MHz, CD₃OD): δ = 7.32 (ddd, *J* = 8, 2, 1 Hz, 1H), 7.23 (ddd, *J* = 8, 7, 2 Hz, 1H), 6.90– 6.79 (m, 2H), 3.83 (s, 1H), 3.69 (ddd, *J* = 12, 8, 5 Hz, 1H), 3.29–3.16 (m, 2H), 3.01 (ddd, *J* = 11, 8, 8 Hz, 1H), 2.24–1.73 (m, 4H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with CD₃OD.

¹³C{¹H} NMR (75 MHz, CD₃OD): δ = 161.3, 131.9, 131.9, 123.4, 120.4, 115.2, 55.4, 53.4, 24.0 (2C) ppm. The carbon atom directly attached to boron was not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (96 MHz, CD₃OD): δ = 18.5 ppm.

HRMS (ESI pos) *m*/*z*: [*M*–Cl]⁺ Calcd for C₁₁H₁₅BNO₂⁺ 204.1190; found: 204.1187.

Elem. Anal. Calcd (%) for C₁₁H₁₅BCINO₂: C 55.16, H 6.31, N 5.85; found: C 54.97, H 6.29, N 5.73.

N,N-dibenzyl-2-hydroxy-2,3-dihydrobenzo[d][1,2]oxaborol-3-aminium chloride

5d was isolated as a white solid (155 mg, 85%), m.p. = 177 °C.

¹**H NMR** (300 MHz, CD₃OD): δ = 7.49–7.42 (m, 6H), 7.39-7.38 (m, 3H), 7.23 (ddd, *J* = 8, 8, 3 Hz, 3H), 6.90–6.78 (m, 2H), 4.39 (d, *J* = 13 Hz, 1H), 4.35 (d, *J* = 13 Hz, 1H), 4.25 (d, *J* = 13 Hz, 1H), 3.77 (d, *J* = 13 Hz, 1H), 3.70 (s, 1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with CD₃OD.

¹³C{¹H} NMR (75 MHz, CD₃OD): δ = 165.5, 132.9, 132.7, 132.3, 131.6 (2C), 131.4 (2C), 131.1, 130.8, 130.6, 130.4 (4C), 124.2, 119.8, 114.1, 57.6, 57.2 ppm. The carbon atom directly attached to boron was not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (96 MHz, CD₃OD): δ = 10.8 ppm.

HRMS (ESI pos) *m/z*: [*M*–CI]⁺ Calcd for C₂₁H₂₁BNO₂⁺ 330.1660; found: 330.1648.

Elem. Anal. Calcd (%) for C₂₁H₂₁BCINO₂: C 68.98, H 5.79, N 3.83; found: C 68.74, H 5.88, N 3.85.

N-benzyl-2-hydroxy-*N*-methyl-2,3-dihydrobenzo[*d*][1,2]oxaborol-3-aminium chloride

5e was isolated as a white solid (104 mg, 72%), m.p. = 183 °C.

¹**H NMR** (300 MHz, CD₃OD) (mixture of diastereomers, dr = 55:45):

 δ (major diastereomer) = 7.51–7.36 (m, 6H), 7.34–7.20 (m, 1H), 6.94–6.81 (m, 2H), 4.44 (d, *J* = 13 Hz, 1H), 4.16 (d, *J* = 13 Hz, 1H), 3.71 (s, 1H), 2.70 (s, 3H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with CD₃OD.

 δ (minor diastereomer) = 7.51–7.36 (m, 6H), 7.34–7.20 (m, 1H), 6.94–6.81 (m, 2H), 4.61 (d, J = 13 Hz, 1H), 3.78 (s, 1H), 3.49 (d, J = 13 Hz, 1H), 2.59 (s, 1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with CD₃OD.

¹³C{¹H} NMR (75 MHz, CD₃OD) (mixture of diastereomers, dr = 55:45):

δ (major diastereomer) = 163.1, 132.6, 132.5, 131.8 (2C), 130.8, 130.3, 130.2 (2C), 122.2, 120.6, 114.9, 58.1, 53.6 (v br), 38.8 ppm.

δ (minor diastereomer) = 163.1, 132.3, 132.3, 131.9 (2C), 130.9, 130.7, 130.2 (2C), 123.0, 120.4, 114.9, 60.6, 53.6 (v br), 39.9 ppm.

¹¹**B NMR** (96 MHz, CD₃OD) (mixture of diastereomers, dr = 55:45): $\delta = 15.7$ ppm.

HRMS (ESI pos) *m*/*z*: [*M*–Cl]⁺ Calcd for C₁₅H₁₇BNO₂⁺ 254.1347; found: 254.1346.

Elem. Anal. Calcd (%) for C₁₅H₁₇BCINO₂: C 62.22, H 5.92, N 4.84; found: C 62.01, H 5.68, N 4.81.

2-hydroxy-N,N-dimethyl-2,3-dihydrobenzo[d][1,2]oxaborol-3-aminium chloride

5f was isolated as a white solid (59 mg, 55%), m.p. = 131 °C.

¹**H NMR** (300 MHz, CD₃OD): δ = 7.39–7.32 (m, 1H), 7.31–7.22 (m, 1H), 6.91–6.81 (m, 2H), 3.67 (s, 1H), 2.85 (s, 3H), 2.65 (s, 3H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with CD₃OD.

¹³C{¹H} NMR (75 MHz, CD₃OD): *δ* = 162.4, 132.2, 132.1, 122.6, 120.3, 114.9, 59.3 (v br), 43.5, 41.4 ppm.

¹¹**B NMR** (96 MHz, CD₃OD): δ = 16.6 ppm.

HRMS (ESI pos) *m/z*: [*M*–Cl]⁺ Calcd for C₉H₁₃BNO₂⁺ 178.1034; found: 178.1031.

Elem. Anal. Calcd (%) for C₉H₁₃BCINO₂: C 50.64, H 6.14, N 6.56; found: C 50.52, H 6.08, N 6.47.

N,N-diethyl-2-hydroxy-2,3-dihydrobenzo[d][1,2]oxaborol-3-aminium chloride

5g was isolated as a white solid (91 mg, 75%), m.p. = 136 $^{\circ}$ C.

¹**H NMR** (300 MHz, CD₃OD): δ = 7.38–7.29 (m, 1H), 7.23 (ddd, 8, 8, 2 Hz, 1H), 6.87–6.82 (m, 2H), 3.83 (s, 1H), 3.28–3.05 (m, 3H), 2.76 (dq, *J* = 14, 7 Hz, 1H), 1.33 (t, *J* = 7 Hz, 3H), 1.25 (t, *J* = 7 Hz, 3H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with CD₃OD.

¹³C{¹H} NMR (75 MHz, CD₃OD): δ = 162.5, 132.0, 131.5, 122.7, 120.4, 114.9, 54.0 (v br), 48.5, 47.5, 10.8, 9.8 ppm.

¹¹**B NMR** (96 MHz, CD₃OD): δ = 16.0 ppm.

HRMS (ESI pos) *m/z*: [*M*–CI]⁺ Calcd for C₁₁H₁₇BNO₂⁺ 206.1347; found: 206.1344.

Elem. Anal. Calcd (%) for C₁₁H₁₇BCINO₂: C 54.70, H 7.10, N 5.80; found: C 54.55, H 7.23, N 5.78.

2-hydroxy-N,N-dipropyl-2,3-dihydrobenzo[d][1,2]oxaborol-3-aminium chloride

5h was isolated as a white solid (93 mg, 69%), m.p. = 138 °C.

¹**H NMR** (300 MHz, CD₃OD): δ = 7.32 (ddd, *J* = 8, 2, 1 Hz, 1H), 7.25 (ddd, *J* = 8, 8, 2 Hz, 1H), 6.87–6.82 (m, 2H), 3.83 (s, 1H), 3.20–2.92 (m, 3H), 2.77–2.51 (m, 1H), 1.96–1.50 (m, 4H), 0.98 (t, *J* = 7 Hz, 3H), 0.87 (t, *J* = 7 Hz, 3H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with CD₃OD.

¹³C{¹H} NMR (75 MHz, CD₃OD): δ = 162.9, 132.2, 131.5, 122.8, 120.4, 114.8, 56.1,54.9, 19.8, 18.8, 11.3, 11.3 ppm. The carbon atom directly attached to boron was not detected, likely due to quadrupolar broadening.

¹¹**B NMR** (96 MHz, CD₃OD): δ = 15.3 ppm.

HRMS (ESI pos) *m/z*: [*M*–Cl]⁺ Calcd for C₁₃H₂₁BNO₂⁺ 234.1660; found: 234.1656.

Elem. Anal. Calcd (%) for C₁₃H₂₁BCINO₂: C 57.92, H 7.85, N 5.20; found: C 57.85, H 7.81, N 5.11.

4-(5-fluoro-2-hydroxy-2,3-dihydrobenzo[d][1,2]oxaborol-3-yl)morpholin-4-ium chloride

5i was isolated as a white solid (101 mg, 74%), m.p. = 183 °C.

¹**H NMR** (300 MHz, CD₃OD): δ = 7.20 (dd, *J* = 9, 3 Hz, 1H), 7.02 (ddd, *J* = 9, 9, 3 Hz, 1H), 6.81 (dd, *J* = 9, 5 Hz, 1H), 4.06–3.93 (m, 2H), 3.84–3.69 (m, 2H), 3.67 (s, 1H), 3.48–3.33 (m, 2H), 3.27–3.22 (m, 1H), 3.16 (ddd, *J* = 12, 12, 4 Hz, 1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with CD₃OD.

¹³C{¹H} NMR (75 MHz, CD₃OD): δ = 158.1, 155.9 (d, *J* = 236 Hz), 121.7 (d, *J* = 8 Hz), 117.2 (d, *J* = 23 Hz), 116.7 (d, *J* = 23 Hz), 113.8 (d, *J* = 8 Hz), 63.9, 63.8, 57.1 (v br), 51.3, 49.9 ppm.

¹¹**B NMR** (96 MHz, CD₃OD): δ = 14.8 ppm.

HRMS (ESI pos) *m/z*: [*M*–Cl]⁺ Calcd for C₁₁H₁₄BFNO₃⁺ 238.1045; found: 238.1041.

Elem. Anal. Calcd (%) for C₁₁H₁₄BCIFNO₃: C 48.31, H 5.16, N 5.12; found: C 48.22, H 5.29, N 5.07.

4-(7-fluoro-2-hydroxy-2,3-dihydrobenzo[d][1,2]oxaborol-3-yl)morpholin-4-ium chloride

5j was isolated as a white solid (111 mg, 81%), m.p. = 191 °C.

¹**H NMR** (300 MHz, CD₃OD): δ = 7.19 (ddd, *J* = 8, 1, 1 Hz, 1H), 7.10 (ddd, *J* = 11, 8, 1 Hz, 1H), 6.81 (ddd, *J* = 8, 8, 5 Hz, 1H), 4.04–3.90 (m, 2H), 3.84–3.70 (m, 2H), 3.68 (s, 1H), 3.46–3.34 (m, 2H), 3.29–3.26 (m, 1H), 3.08 (ddd, *J* = 12, 12, 4 Hz, 1H) ppm. Protons directly attached to nitrogen and oxygen were not detected due to exchange with CD₃OD.

¹³C{¹H} NMR (75 MHz, CD₃OD): δ = 150.4 (d, *J* = 243 Hz), 149.4 (d, *J* = 12 Hz), 125.9 (d, *J* = 3 Hz), 124.1 (d, *J* = 4 Hz), 118.5 (d, *J* = 7 Hz), 117.1 (d, *J* = 18 Hz), 63.9, 63.8, 57.2 (v br), 51.5, 49.8 ppm. ¹¹B NMR (96 MHz, CD₃OD): δ = 14.6 ppm.

HRMS (ESI pos) *m/z*: [*M*–CI]⁺ Calcd for C₁₁H₁₄BFNO₃⁺ 238.1045; found: 238.1041.

Elem. Anal. Calcd (%) for C₁₁H₁₄BCIFNO₃: C 48.31, H 5.16, N 5.12; found: C 48.12, H 5.25, N 5.26.

IV. Mechanistic Studies

1. Stepwise reaction

Experimental procedures

(1) In a 10 mL reaction tube equipped with a magnetic stirring bar, MeCN (2 mL), salicylaldehyde **1a** (0.5 mmol), and morpholine **2a** (0.5 mmol, 1.0 equiv) were added in this order, and 1,3,5-trimethoxybenzene (0.25 mmol, 0.5 equiv) was then added as an internal calibration standard. The resulting mixture was analysed by ¹H NMR spectroscopy in CDCl₃ solution. The ¹H NMR spectrum is shown below (Figure S1). The aminal **4a**' was obtained in 26% NMR yield.

Figure S1. ¹H NMR spectrum (300 MHz, CDCl₃, rt) of the reaction mixture of **1a** and **2a** in MeCN; the product yield was determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene (blue **+** sign) as the internal calibration standard.

- (2) To the above filtrate, B₂(OH)₄ (0.75 mmol, 1.5 equiv) was added and the reaction mixture was stirred at room temperature overnight, then filtered through filter paper and washed with MeCN (10 mL). The product was dried under vacuum to give **4a** as a white solid (141 mg, 92% isolated yield).
- (3) To a 10 mL reaction tube equipped with a magnetic stirring bar, 4a (141 mg, 0.46 mmol) and 1N HCl_{aq} (2 mL) were added. The resulting solution was stirred for 15 min, and then extracted with Et₂O (2 x 5 mL) to remove impurities. The aqueous solution was evaporated to dryness under vacuum to obtain a white residue, which was then dissolved in CH₂Cl₂ (5 mL). Removal of CH₂Cl₂ under vacuum gave the product 5a as white solid (94% isolated yield).

2. Reaction of salicylaldehyde 1a with different rations of morpholine 2a.

Figure S2. ¹H NMR spectrum of the reaction of salicylaldehyde **1a** with 1 equivalent of morpholine **2a** (300 MHz, CDCl₃, rt); 1,3,5-trimethoxybenzene was used as an internal standard.

Figure S3. ¹H NMR spectrum of the reaction of salicylaldehyde **1a** with 2 equivalents of morpholine **2a** (300 MHz, CDCl₃, rt); 1,3,5-trimethoxybenzene was used as an internal standard.

Figure S4. ¹H NMR spectrum of the reaction of salicylaldehyde **1a** with 3 equivalents of morpholine **2a** (300 MHz, CDCl₃, rt); 1,3,5-trimethoxybenzene was used as an internal standard.

Figure S5. ¹H NMR spectrum of the reaction of salicylaldehyde **1a** with 5 equivalents of morpholine **2a** (300 MHz, CDCl₃, rt); 1,3,5-trimethoxybenzene was used as an internal standard.

Figure S6. ¹H NMR spectrum of the reaction of salicylaldehyde **1a** with 10 equivalents of morpholine **2a** (300 MHz, CDCl₃, rt); 1,3,5-trimethoxybenzene was used as an internal standard.

3. Reaction conducted in ethanol.

Figure S7. HRMS (APCI neg) of the reaction mixture; m/z of **4a-EtO** and/or **4a-EtO**': $[M-H]^-$ calcd for C₁₃H₁₉B₃NO₇⁻ 334.1446, found 334.1447.

Figure S8. HRMS (APCI neg) of the reaction mixture; *m*/*z* of **4a-2EtO**: [*M*–H]⁻ calcd for C₁₅H₂₃B₃NO₇⁻ 362.1759, found 362.1763.

Figure S9. ¹H NMR spectrum of the reaction mixture (300 MHz, D₂O, rt).

V. NMR Spectra of Products

^{11}B NMR spectrum (96 MHz, CD_3OD) of 4d

-7.47

-18.37

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹¹B NMR spectrum (96 MHz, D₂O) of **4i**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

-10.76

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

VI. Single-crystal X-ray Diffraction Studies

Crystal structure determination Crystals suitable for single-crystal X-ray diffraction were selected, coated in perfluoropolyether oil, and mounted on MiTeGen sample holders. Diffraction data were collected on a BRUKER X8-APEX II diffractometer with a CCD area detector using Mo-K_a radiation monochromated by graphite (**4p**) or multi-layer mirror (**4a** and **4d**). The crystals were cooled using Oxford Cryostream low-temperature devices. Data were collected at 100 K. The images were processed and corrected for Lorentz-polarization effects and absorption as implemented in the Bruker software packages. The structures were solved using the intrinsic phasing method (SHELXT)² and Fourier expansion technique. All non-hydrogen atoms were refined in anisotropic approximation, with hydrogen atoms 'riding' in idealised positions, by full-matrix least squares against *F*² of all data, using SHELXL³ software and the SHELXLE⁴ graphical user interface. Diamond⁵ software was used for graphical representation. Crystal data and experimental details are listed in Table S1; full structural information has been deposited with the Cambridge Crystallographic Data Centre. CCDC-1964346 (**4a**), 1964347 (**4d**), and 1964348 (**4p**).

Table S1 Single-crystal X-ray diffraction data and structure refinements of compounds 4a, 4d, and4p.

Data	4a	4d	4p
CCDC number	1964346	1964347	1964348
Empirical formula	$C_{11}H_{16}B_3NO_7$	$C_{21}H_{22}B_3NO_6 \cdot 2(C_3H_6O)$	$C_{19}H_{32}B_3NO_7$
Formula weight / g·mol ^{−1}	306.68	532.98	418.88
Т/К	100(2)	100(2)	100(2)
λ / Å, radiation	0.71073, MoKα	0.71073, MoKα	0.71073, MoKα
Crystal size / mm ³	0.40×0.15×0.07	0.54 ×0.27×0.16	0.53 ×0.27×0.20
Crystal color, habit	colourless plate	colourless block	colourless plate
μ / mm ⁻¹	0.123	0.094	0.092
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	P21/c	PĪ	PĪ
a / Å	8.430(6)	9.549(5)	11.314(7)
b/Å	17.184(13)	11.307(2)	11.980(8)
c / Å	9.073(7)	13.260(3)	17.961(10)
α/°	90	100.88(3)	72.586(9)
β/°	93.26(4)	92.261(11)	79.494(13)
γ/°	90	105.79(3)	72.755(19)
Volume / Å ³	1312.2(17)	1346.6(8)	2207(2)
Z	4	2	4
$ ho_{\sf calc}$ / g \cdot cm $^{-3}$	1.552	1.314	1.261
F(000)	640	564	896
heta range / °	2.370 - 26.057	1.571 – 26.478	1.895–26.420
Reflections collected	10207	15073	40589
Unique reflections	2587	5534	9038
Parameters / restraints	203 / 0	399 / 162	557 / 1
GooF on <i>F</i> ²	1.032	1.048	1.016
R ₁ [I>2σ(I)]	0.0472	0.0415	0.0718
wR ² (all data)	0.1188	0.1076	0.1569
Max. / min. residual electron densitv / e·Å⁻³	0.321 / -0.220	0.295 / -0.266	0.426 / -0.291

Figure S1. Molecular structure of **4a** in the solid state at 100 K. Atomic displacement ellipsoids are drawn at the 50% probability level, and H atoms are omitted for clarity.

Figure S2. Molecular structure of **4d** in the solid state at 100 K. Atomic displacement ellipsoids are drawn at the 50% probability level. H atoms and solvent molecules are omitted for clarity.

Figure S3. Molecular structure of **4p** in the solid state at 100 K. Atomic displacement ellipsoids are drawn at the 50% probability level, and H atoms are omitted for clarity. Only one of two independent molecules is shown here.

VII. References

- 1. M. Raducan, R. Alam and K. J. Szabó, *Angew. Chem. Int. Ed.*, 2012, **51**, 13050-13053.
- 2. G. Sheldrick, Acta Crystallogr., 2015, A71, 3-8.
- 3. G. Sheldrick, Acta Crystallogr., 2008, A64, 112-122.
- 4. C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Crystallogr., 2011, 44, 1281-1284.
- 5. Brandenburg, K. Diamond (version 4.4.0), Crystal and Molecular Structure Visualization, Crystal Impact, H. Putz & K. Brandenburg GbR, Bonn (Germany), 2017.