Supporting Information

(Dated: May 29, 2020)

FIG. S-1: The radius of gyration of lignin for each lignin model vs. time. Data is averaged over three different run. After these graphs, we decided to use the trajectories between 150-500 ns.

FIG. S-2: The distribution of the $\theta = C_{\alpha} - C_{\beta} - O_4 - C_4$ dihedral angles in the $\beta - O - 4$ linkages

FIG. S-3: The averaged probability of dihedral angles, only β -O-4 linkages, of S and G lignins is compared with the probability of dihedral angles of S&G-lignin (alternating).

		L	ν	K
H-lignin	THF:water	0.88	0.61	1.07
	GVL:water	0.95	0.564	1.12
G-lignin	THF:water	0.96	0.61	1.08
	GVL:water	0.91	0.6	1.09
S-lignin	THF:water	0.85	0.61	1.03
	GVL:water	0.86	0.64	1.04

TABLE S-2: Fitting parameters obtained from the fits of Eq.(3) to the distribution of the end-toend distance (see Fig.4)

TABLE S-3: Fitting parameters obtained from the fits of $P(R) = A \times (4\pi R^2) \times (\frac{3}{2\pi \langle R \rangle^2})^{3/2} \times \exp(-\frac{3R^2}{2\langle R \rangle^2})$ to the distribution of the end-to-end distance (see Fig.4)

		$A(\mathbf{A})$	$\langle R \rangle$ (A)
H-lignin	THF:water	10.75	39.84
	GVL:water	10.55	36.24
G-lignin	THF:water	10.78	37.17
	GVL:water	10.96	39.71
S-lignin	THF:water	10.87	40.49
	GVL:water	11.26	43.57

FIG. S-4: The radius of gyration of lignin vs. monomer number.

		A	ν	В
H-lignin	water	4.329	0.28 ± 0.01	
	THF:water	2.155	0.61 ± 0.01	2.404
	GVL:water	2.175	0.59 ± 0.01	2.37
G-lignin	water	4.18	0.32 ± 0.01	
	THF:water	2.218	0.60 ± 0.01	2.35
	GVL:water	2.108	0.61 ± 0.01	2.407
S-lignin	water	4.21	0.35 ± 0.01	
	THF:water	2.151	0.60 ± 0.01	2.422
	GVL:water	2.019	0.65 ± 0.01	2.441
S&G-lignin	water	4.145	0.34 ± 0.01	
(alternating)	THF:water	2.192	0.62 ± 0.01	2.286
	GVL:water	2.079	0.62 ± 0.01	2.456
S&G-lignin	water	4.219	0.32 ± 0.01	
(random)	THF:water	2.209	0.61 ± 0.01	2.254
	GVL:water	2.084	0.60 ± 0.01	2.474

TABLE S-4: Fitting parameters obtained from the fits of Eq.(4) to the radius of gyration vs. monomer number (see Figs.5 and S-4)

TABLE S-5: Interaction energies between lignin and the solvent (in kcal/mol) averaged over all the trajectories,

	THF	\mathbf{GVL}
lignin-cosolvent	-1036 ± 8	-1047 ± 18
lignin-water	-1514 ± 43	-1590 ± 28
Total	-2550 ± 51	-2637 ± 46

FIG. S-5: The averaged radius of gyration value of S and G lignins vs. monomer number is compared with the radius of gyration of S/G-lignin (alternating).

FIG. S-6: The radial distribution of the distance between lignin and water, and between lignin and co-solvents (THF and GVL).

FIG. S-7: The averaged radial distribution function of G- and S-lignin compared to the radial distribution function of S/G-lignin (alternating).

ID	monomers	bond	linkages
1	Н		
2	Н	1-2	$\beta O4L$
3	Н	2-3	$\beta O4L$
4	Н	3-4	$\beta O4L$
5	Н	4-5	$\beta O4L$
6	Н	5-6	$\beta O4L$
7	Н	6-7	$\beta O4R$
8	Н	7-8	$\beta O4R$
9	Н	8-9	$\beta O4R$
10	Н	9-10	$\beta O4R$
11	Н	10-11	$\beta O4R$
12	Н	11-12	$\beta O4L$
13	Н	12-13	$\beta O4R$
14	Н	13-14	$\beta O4L$
15	Н	14-15	$\beta O4R$
16	Н	15-16	$\beta O4L$
17	Н	16-17	$\beta O4R$
18	Н	17-18	$\beta O4L$

TABLE S-6: H-units with $\beta-O-4$ linkages

ID	monomers	bond	linkages
1	G		
2	G	1-2	$\beta O4L$
3	G	2-3	$\beta O4L$
4	G	3-4	$\beta O4L$
5	G	4-5	$\beta O4L$
6	G	5-6	$\beta O4L$
7	G	6-7	$\beta O4R$
8	G	7-8	$\beta O4R$
9	G	8-9	$\beta O4R$
10	G	9-10	$\beta O4R$
11	G	10-11	$\beta O4R$
12	G	11-12	$\beta O4L$
13	G	12-13	$\beta O4L$
14	G	13-14	$\beta O4L$
15	G	14-15	$\beta O4L$
16	G	15-16	$\beta O4R$
17	G	16-17	$\beta \rm O4R$
18	G	17-18	$\beta O4R$

TABLE S-7: G-units with $\beta - O - 4$ linkages (linear)

ID	monomers	bond	linkages
1	G		
2	G	1-2	$\beta O4L$
3	G	2-3	$\beta O4L$
4	G	3-4	$\beta O4L$
5	G	4-5	$\beta O4L$
6	G	5-6	$\beta O4L$
7	G	6-7	$\beta O4R$
8	G	7-8	5-5
9	G	8-9	$\beta O4R$
10	G	9-10	$\beta O4R$
11	G	10-11	$\beta O4R$
12	G	11-12	$\beta O4R$
13	G	7-13	$\beta O4L$
14	G	13-14	$\beta O4L$
15	G	14-15	$\beta O4L$
16	G	15-16	$\beta O4R$
17	G	16-17	$\beta O4R$
18	G	17-18	$\beta O4R$

TABLE S-8: G-units with 16 $\beta - O - 4$ and 1 5 - 5 linkages (one branch)

ID	monomers	bond	linkages
1	G		
2	S	1-2	$\beta O4L$
3	G	2-3	$\beta O4L$
4	S	3-4	$\beta O4L$
5	G	4-5	$\beta O4L$
6	S	5-6	$\beta O4L$
7	G	6-7	$\beta O4R$
8	S	7-8	$\beta O4L$
9	G	8-9	$\beta O4L$
10	S	9-10	$\beta O4R$
11	G	10-11	$\beta O4R$
12	S	11-12	$\beta O4R$
13	G	12-13	$\beta O4R$
14	S	13-14	$\beta O4R$
15	G	14-15	$\beta O4R$
16	S	15-16	$\beta O4L$
17	G	16-17	$\beta O4R$
18	S	17-18	$\beta O4R$

TABLE S-9: 50% S and 50% G with $\beta - O - 4$ linkages (alternating)

ID	monomers	bond	linkages
1	G		
2	G	1-2	$\beta O4L$
3	G	2-3	$\beta O4L$
4	S	3-4	$\beta O4L$
5	S	4-5	$\beta O4L$
6	S	5-6	$\beta O4L$
7	S	6-7	$\beta O4R$
8	G	7-8	$\beta 5 R$
9	G	8-9	$\beta O4R$
10	S	9-10	$\beta O4R$
11	S	10-11	$\beta O4R$
12	G	11-12	$\beta 5 L$
13	G	12-13	$\beta O4L$
14	S	13-14	$\beta O4L$
15	G	14-15	$\beta O4L$
16	S	15-16	$\beta O4R$
17	G	16-17	$\beta O4R$
18	S	17-18	$\beta O4R$

TABLE S-10: 50% S and 50% G with 15 $\beta - O - 4$ (88%) and 2 $\beta - 5$ (12%) linkages (random)

ID	monomers	bond	linkages
1	S		
2	S	1-2	$\beta O4L$
3	S	2-3	$\beta O4R$
4	S	3-4	$\beta O4R$
5	S	4-5	$\beta O4L$
6	S	5-6	$\beta O4L$
7	S	6-7	$\beta O4R$
8	S	7-8	$\beta O4R$
9	S	8-9	$\beta O4R$
10	S	9-10	$\beta O4R$
11	S	10-11	$\beta O4L$
12	S	11-12	$\beta O4L$
13	S	12-13	$\beta O4R$
14	S	13-14	$\beta O4L$
15	S	14-15	$\beta O4R$
16	S	15-16	$\beta O4L$
17	S	16-17	$\beta O4L$
18	S	17-18	$\beta O4L$

TABLE S-11: S-units with $\beta - O - 4$ linkages