Supporting Information

An acid-catalyzed 1,4-addition isocyanide-based multicomponent reaction in neat water

Jie Lei, ${ }^{\text {a,b }}$ Yong Li, ${ }^{\text {a,b }}$ Jia Xu, ${ }^{\text {a }}$ Dian-Yong Tang, ${ }^{\text {a }}$ Jing-Wei Shao, ${ }^{\mathrm{b}}$ Hong-yu Li, ${ }^{, \mathrm{b}}$ Zhong-Zhu Chen*a and Zhi-Gang Xu*a

${ }^{\text {a }}$ College of Pharmacy, National \& Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China. Email: 18883138277@163.com; xzg@cqwu.edu.cn
${ }^{\mathrm{b}}$ Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA. Email: HLi2@uams.edu

Table of Contents Page
General Experimental 2
General procedures for compounds 5 2
General procedures for compounds $\mathbf{1 0}$ 2
General procedures for compounds 11 3
Control experiments 3-4
Acylatation of compound 5a 5
NMR characterization data and gigures of products 5-46
X-ray data 47

General Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker 400 spectrometer. ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift in $\mathrm{ppm}(\delta)$, multiplicity ($\mathrm{s}=\operatorname{singlet,~} \mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{m}=$ multiplet), coupling constant (Hz), relative intensity. ${ }^{13} \mathrm{C}$ NMR data are reported as follows: chemical shift in ppm (δ). LC/MS analyses were performed on a Shimadzu-2020 LC-MS instrument using the following conditions: Shim-pack VPODS C18 column (reverse phase, $150 \times 4.6 \mathrm{~mm}$); a linear gradient from 10% water and 90% acetonitrile to 75% acetonitrile and 25% water over 6.0 min ; flow rate of 0.5 $\mathrm{mL} / \mathrm{min}$; UV photodiode array detection from 200 to 400 nm . High-resolution mass spectra (HRMS) were recorded on Thermo Scientific Exactive Plus System. The products were purified by Biotage Isolera ${ }^{\mathrm{TM}}$ Spektra Systems and hexane/EtOAc solvent systems. All reagents and solvents were obtained from commercial sources and used without further purification.

General procedures for compound 5.

The solution of formic acid ($5 \mathrm{~mol} \%$, aqueous soultion) was added to a mixture of aldehyde (0.3 mmol), amine (0.3 mmol) and isocyanide (0.3 mmol). Then this system was stirred in water $(2.0 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$ for 2 h and then monitored by TLC. When the reaction was completed, the reaction mixture was diluted with EtOAc (15.0 mL), washed with sat. NaHCO_{3} and brine. The organic layer was dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane ($0-100 \%$) to afford the relative targeted product 5 .

General procedure for compound 11

The solution of formic acid ($5 \mathrm{~mol} \%$, aqueous soultion) was added to a mixture of chromone-3-carboxaldehyde 1a (0.2 mmol), 2-methylpropan-2-amine 2a (0.2 mmol), 1,1,3,3-tetramethylbutyl isocyanide $\mathbf{3 c}(0.2 \mathrm{mmol})$. Then this system was stirred in water $(1.5 \mathrm{~mL})$ at $100{ }^{\circ} \mathrm{C}$ for 2 h and then monitored by TLC. When the reaction was completed, the reaction mixture was concentrated under reduced pressure. In a solution of this residue in dichloromethane (DCM) (3.0 mL), [bis(trifluoroacetoxy)iodo]benzene (PIFA, 0.2 mmol) and trifluoroacetic acid (TFA, 0.2 mmol) were added and stirred at room temperature for 6 h . When the reaction was completed, the reaction mixture was diluted with EtOAc (15.0 mL), washed with sat.
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine. The organic layer was dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane $(0-100 \%)$ to afford the product 11.

Control experiments


```
*)
\(\mathrm{m} / \mathrm{z}\) Intensity Relative
\(121.02840 \quad 24675974.0 \quad 0.14\)
174.05490 101199264.0 0.58
230.11754 34497744.0 0.20
331.20160 30973452.0 0.18
385.24933 39078452.0 0.22
387.26462 17416132608.0 100.00
388.26730 4454016000.0 25.57
389.27026 619520576.0 3.56
390.27338 55054208.0 0.32
```


Acylatation of compound 5a

A solution of chromone-3-carboxaldehyde 1a (0.3 mmol), 2-methylpropan-2amine 2a (0.3 mmol), 2-isocyano-1,3-dimethylbenzene 3a (0.3 mmol) and 1-(4-chlorophenyl)cyclopropane-1-carboxylic acid $\mathbf{1 2}(0.3 \mathrm{mmol})$ was stirred in 2,2,2trifluoroethanol (TFE, 2.0 mL) for 2 h . The reaction mixture was monitored by TLC. When the reaction was completed, the solvent was removed under reduced pressure. Then the reaction mixture was diluted with EtOAc (15.0 mL), washed with sat. NaHCO_{3} and brine. The organic layer was dried over MgSO_{4} and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane ($0-100 \%$) to afford product $\mathbf{1 3}$ with 83% yield.

NMR Characterization Data and Figures of Products

(Z)-3-((tert-butylamino)methylene)-N-(2,6-dimethylphenyl)-4-oxochromane-2carboxamide

5a, 94 mg , light green solid, $83 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.3),{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.85(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.47$ $-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.16-6.96(\mathrm{~m}, 5 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.81,168.96,156.42,149.08,135.33,133.67,132.83,128.19$, $127.56,126.62,123.66,122.63,116.53,95.50,78.55,52.91,29.99,18.14$. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$379.2016, found 379.2012.

(Z)-N-(tert-butyl)-3-((tert-butylamino)methylene)-4-oxochromane-2-carboxamide

$\mathbf{5 b}, 87 \mathrm{mg}$, light yellow solid, $88 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.25),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.74(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}$, $1 \mathrm{H}), 7.29(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}$, $1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.35$, 168.87, 156.52, 148.57, 133.41, 126.48, 123.78, 122.34, 116.42, 95.96, 78.52, 52.79, 51.20, 29.99, 28.58. HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$331.2016, found 331.2019.
(Z)-3-((tert-butylamino)methylene)-4-oxo-N-(2,4,4-trimethylpentan-2-yl)chromane-2-carboxamide

5c, 80 mg , light yellow solid, $70 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.30),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.81(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.6,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H})$, $1.38(\mathrm{~s}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.55,168.22$, $155.36,149.27,135.90,129.19,125.21,118.35,114.92,95.25,78.51,55.29,51.94$, 31.38, 29.96, 29.12, 28.69. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 387.2642 , found 387.2646 .
(Z)-N-(tert-butyl)-3-(((2-methylbut-3-yn-2-yl)amino)methylene)-4-oxochromane-2carboxamide

5d, 88 mg , light yellow solid, $86 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.25),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.64(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=12.6$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{ddd}, J=8.2,7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=$ $8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 6 \mathrm{H}), 1.32$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.34,168.43,156.81,148.72$, 133.79, 126.61, 123.56, 122.39, 116.61, 97.23, 84.85, 78.54, 73.21, 51.25, 31.26, 30.99, 28.60. HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 341.1860$, found 341.1857.
(Z)-3-(((2-methylbut-3-yn-2-yl)amino)methylene)-4-oxo-N-(2,4,4-trimethylpentan-2-yl)chromane-2-carboxamide

5e, 94 mg , light yellow solid, $79 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.25),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.66(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=12.7,0.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38$ (ddd, $J=8.2,7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.09-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=8.2,0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 5 \mathrm{H})$, $1.36(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.17,168.26$, 156.76, 148.96, 133.78, 126.61, 123.48, 122.35, 116.57, 96.98, 84.87, 78.51, 73.23, $55.19,51.95,51.17,31.36,29.14,28.68$. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$ $(\mathrm{M}+\mathrm{H})^{+}$397.2486, found 397.2502.
(Z)-N-(2,6-dimethylphenyl)-3-(((2-methylbut-3-yn-2-yl)amino)methylene)-4-oxochromane-2-carboxamide

5f, 67 mg , light yellow solid, $57 \%(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{Rf}=0.35),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.75(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.56(\mathrm{~m}$, 2 H), 7.42 (ddd, $J=8.2,7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.10-6.99$ (m, 5H), 5.52 (s, 1H), 2.50 (s, $1 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H}), 1.60(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.81$, $168.53,156.71,149.25,135.36,134.06,132.84,128.18,127.56,126.75,123.45$, $122.68,116.74,96.75,84.81,78.54,73.33,51.23,31.10,18.19$. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 389.1860$, found 389.1861.
(Z)-N-(tert-butyl)-3-((isopropylamino)methylene)-4-oxochromane-2-carboxamide

$\mathbf{5 g}, 65 \mathrm{mg}$, light yellow solid, $69 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.25),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.41(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=11.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H})$, $5.15(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{dt}, J=13.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{dd}, J=5.4,4.7 \mathrm{~Hz}, 9 \mathrm{H}), 1.27(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.33,168.93,156.50,150.76,133.46$, $126.53,122.34,116.39,95.90,78.29,51.23,50.60,28.60,23.77,23.57$. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 317.1860$, found 317.1861.

5h, 66 mg , light yellow solid, $60 \%(\mathrm{EA} / \mathrm{Hex}=25 \%, \mathrm{Rf}=0.30),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) $\delta 10.43(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{ddd}, J=8.6,7.4,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{ddd}, J=7.4,4.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=$ $8.2,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{td}, J=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~d}, J$ $=18.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.27(\mathrm{dd}, J=6.5,0.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.26,168.81,156.46,151.06,133.46,126.53$, $123.59,122.31,116.36,95.63,78.30,55.17,51.81,50.64,31.53,31.33,29.21,28.74$, 23.82, 23.54. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$373.2486, found 373.2486.
(Z)-6-bromo-N-(tert-butyl)-3-((tert-butylamino)methylene)-4-oxochromane-2carboxamide

$\mathbf{5 i}, 72 \mathrm{mg}$, light green solid, 59% (EA/Hex $=20 \%, \operatorname{Rf}=0.25),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.78(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.6,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H})$, $1.33(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.66,168.44,155.39$, 149.04, 135.93, 129.21, 118.38, 114.98, 95.48, 78.53, 53.03, 51.34, 29.94, 28.59. HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$409.1121, found 409.1131.
(Z)-6-bromo-N-(tert-butyl)-3-(((2-methylbut-3-yn-2-yl)amino)methylene)-4-oxochromane-2-carboxamide

$\mathbf{5 j}, 92 \mathrm{mg}$, light yellow solid, $74 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.25)$, ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.67(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{~d}$, $J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.74$, $168.02,155.68,149.24,136.32,129.31,125.04,118.58,115.03,96.67,84.58,78.56$, $73.50,51.40,31.24,30.97,28.63$. HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 419.0965, found 419.0997.

(Z)-6-bromo-3-(((2-methylbut-3-yn-2-yl)amino)methylene)-4-oxo-N-(2,4,4-

 trimethylpentan-2-yl)chromane-2-carboxamide
$\mathbf{5 k}, 112 \mathrm{mg}$, light yellow solid, $80 \%(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{Rf}=0.25),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.70(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=12.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46$ (dd, $J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H})$, $2.51(\mathrm{~s}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 2 \mathrm{H}), 1.60(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.38(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 178.87, 167.83, 155.65, 149.47, 137.28, 136.30, 129.30 , 128.80, 124.96, 119.73, 118.55, 114.98, 96.44, 78.54, 73.52, 55.35, 52.47, 52.01, 31.60, 30.99, 29.68, 29.11. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 475,1591 , found 475.1595 .
(Z)-N-(2,6-dimethylphenyl)-3-((isopropylamino)methylene)-4-oxochromane-2carboxamide

5l, 78 mg , white solid, $71 \%(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{Rf}=0.25),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.44(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.40$ (ddd, J $=8.3,7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.02(\mathrm{~m}, 4 \mathrm{H}), 5.48(\mathrm{~s}$, $1 \mathrm{H}), 3.53(\mathrm{dq}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 6 \mathrm{H}), 1.28(\mathrm{dd}, J=6.5,3.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.02,168.94,156.47,151.15,135.31,133.75,132.80$, $128.19,127.55,126.68,123.61,122.64,116.56,95.52,78.44,50.74,23.72,23.62$, 18.12. HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 365.1860$, found 365.1865 .

(Z)-6-bromo-N-(tert-butyl)-3-((isopropylamino)methylene)-4-oxochromane-2-

 carboxamide
$\mathbf{5 m}, 82 \mathrm{mg}$, white solid, $69 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.35),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.45(\mathrm{~d}, J=21.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=0.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54(\mathrm{td}, J=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.50,169.19,156.22,152.30,136.82$, $130.09,125.97,119.20,115.80,96.05,79.19,56.19,52.74,51.64,32.44,32.23,30.06$, 29.61, 24.61, 24.37. HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 395.0965$, found 395.0961 .

(Z)-N-butyl-3-((tert-butylamino)methylene)-4-oxochromane-2-carboxamide

5n, 35 mg , yellow solid, $36 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.3),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.78(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{ddd}, \mathrm{J}=29.6$, $13.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.84$ (dd, $\mathrm{J}=8.0,6.7 \mathrm{~Hz}, 3 \mathrm{H}) .13 \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.02,169.97,156.48,148.86$, $133.48,126.50,123.58,122.34,116.35,95.58,52.82,38.99,31.46,29.98,29.66$, 29.39, 19.81, 13.62. HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$331.2016, found 331.2014.

(Z)-N-benzyl-3-((tert-butylamino)methylene)-4-oxochromane-2-carboxamide

50, 45 mg , yellow solid, $42 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.3),{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{cdcl}_{3}\right)$ $\delta 10.78(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.11(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~s}$, $1 \mathrm{H}), 4.57-4.38(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.09, 156.44, $148.83,137.69,133.57,128.66,127.45,1127.28,126.53,123.99,122.43,116.50$, 95.49, 52.86, 43.06, 29.53. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 365.1860 , found 365.1859 .
(Z)-3-((tert-butylamino)methylene)-4-oxo-N-((S)-1-phenylethyl)chromane-2carboxamide

5p $(d r=1: 1), 62 \mathrm{mg}$, yellow solid, $55 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \operatorname{Rf}=0.3),{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.79(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 10.70(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (s, 1H), $7.33(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~s}, 2 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}$, $3 \mathrm{H}), 7.05(\mathrm{dd}, \mathrm{J}=17.2,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.07-4.99(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 181.17,179.02,169.28,168.94,158.21,156.45,154.77,149.06,148.34$, $134.22,133.44,128.84,128.54,128.40,128.38,127.49,126.11,126.05,125.61$, $125.47,125.43,124.02,123.87,122.38,117.32,116.52,116.46,78.42,78.22,52.81$, 52.48, 48.76, 48.53, 29.99, 29.45, 22.00, 21.87. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$379.2016, found 379.2015.

(Z)-3-((tert-butylamino)methylene)-N-cyclohexyl-4-oxochromane-2-carboxamide

5q, 41 mg , yellow solid, $39 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.3),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.76(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=17.8,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J$ $=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}), 1.20-1.10(\mathrm{~m}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.19,169.02,155.50,134.11,133.73,133.14$, $126.49,125.72,125.17,122.35,118.20,116.34,96.20,52.55,48.15,29.90,29.54$,
25.38, 24.54. HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$357.2173, found 357.2177 .
(Z)-3-((tert-butylamino)methylene)-6-methyl-4-oxo-N-(2,4,4-trimethylpentan-2-yl)chromane-2-carboxamide

5r, 95 mg , yellow solid, $79 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.3),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.76(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $1.66(\mathrm{~s}, 2 \mathrm{H}), 1.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.33(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 179.47, 168.79, 154.42, 148.70, 134.18, 131.67, $126.42,123.31,116.14,95.88,78.42,55.12,52.73,51.92,31.54,31.48,31.35,29.99$, 29.14, 28.78, 28.67, 20.57. HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 401.2799, found 401.2800.
(Z)-3-((tert-butylamino)methylene)-6,8-dichloro-4-oxo-N-(2,4,4-trimethylpentan-2-yl)chromane-2-carboxamide

5s, 113 mg , yellow solid, $83 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.3),{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.63(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 2 \mathrm{H}) 1.46(\mathrm{~s}, 6 \mathrm{H}), 1.36$ (s,

9H), $1.00(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 176.12, 167.96, 156.12, 150.34, 133.93, 132.41, 129.13, 124.82, 123.17, 78.80, 51.21, 31.75, 31.43, 29.92, 29.35. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 455.1863$, found 455.1863.
(Z)-3-((tert-butylamino)methylene)-6-chloro-4-oxo-N-(2,4,4-trimethylpentan-2-yl)chromane-2-carboxamide

5t, 89 mg , yellow solid, $71 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.3),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.83(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=17.9,11.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.36$ (s, 9H), $0.93(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.75,168.31,154.93,149.31$, $133.10,127.72,126.18,124.86,118.01,95.38,78.58,55.32,53.07,51.98,31.62$, 31.42, 30.00, 29.16, 28.73. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{ClN}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$ 421.2252 , found 421.2250 .
(Z)-N-(tert-butyl)-3-((cyclopropylamino)methylene)-4-oxochromane-2-carboxamide

5u, 44 mg , light green solid, 47% (EA/Hex $=30 \%, \mathrm{Rf}=0.35),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.32(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 1 \mathrm{H})$, $7.20(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}$, $1 \mathrm{H}), 2.82(\mathrm{~s}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 0.77-0.73(\mathrm{~m}, 2 \mathrm{H}), 0.71(\mathrm{dd}, J=4.8,3.5 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.18,156.97,153.18,134.06,127.08,123.87$,
122.72, 116.81, 97.28, 78.70, 51.62, 29.78, 28.96, 6.93. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$315.1703, found 315.1701.
(Z)-3-((butylamino)methylene)-N-(2,6-dimethylphenyl)-4-oxochromane-2-
carboxamide

$\mathbf{5 v}, 24 \mathrm{mg}$, white solid, $21 \%(\mathrm{EA} / \mathrm{Hex}=30 \%, \mathrm{Rf}=0.3),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.45(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=14.9,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 2H), 5.47 ($\mathrm{s}, 1 \mathrm{H}$), 3.29 (dd, $J=13.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.03 ($\mathrm{s}, 6 \mathrm{H}$), 1.38 (dd, $J=15.0,7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 180.55,155.51,153.31,151.26,133.67,126.59,124.00,122.54,116.79$, 96.79, 71.38, 62.59, 49.21, 32.85, 30.00, 19.66, 13.59. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$379.2016, found 379.2021.
(Z)-4-oxo-3-(pyrrolidin-1-ylmethylene)-N-(2,4,4-trimethylpentan-2-yl)chromane-2carboxamide

5w, 72 mg , light green solid, $63 \%(\mathrm{EA} / \mathrm{Hex}=40 \%, \mathrm{Rf}=0.2),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.06-6.98(\mathrm{~m}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H})$, $1.96(\mathrm{~s}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.84(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.76(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.30,169.90,156.82,146.98,133.64,127.89$,
122.10, 116.02, 75.67, 55.11, 51.27, 31.37, 31.14, 29.66, 29.35, 28.84. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+}$385.2486, found 385.2486.

3-((4-methoxypiperidin-1-yl)methylene)-4-oxo-N-(2,4,4-trimethylpentan-2-yl)chromane-2-carboxamide

$\mathbf{5 x}, 84 \mathrm{mg}$, light green solid, $66 \%(\mathrm{EA} / \mathrm{Hex}=40 \%, \mathrm{Rf}=0.2),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.68(\mathrm{~m}, 2 \mathrm{H})$, 3.59 - 3.41 (m, 3H), 3.35 (s, 3H), 1.94 (dd, $J=16.1,9.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.75 (d, $J=11.4 \mathrm{~Hz}$, 2 H), 1.24 ($\mathrm{s}, 2 \mathrm{H}$), 1.23 (d, $J=8.4 \mathrm{~Hz}, 6 \mathrm{H}$), 0.77 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $178.83,169.39,149.65,133.75,127.83,122.17,116.11,97.40,75.90,73.92,55.78,55.18$, 51.21, 31.49, 31.39, 31.30, 31.21, 31.13, 30.71, 29.67, 29.36, 28.87, 28.78. HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 429.2478$, found 429.2477.

3-(morpholinomethylene)-4-oxo-N-(2,4,4-trimethylpentan-2-yl)chromane-2carboxamide

5y, 69 mg , light green solid, 58\% (EA/Hex $=40 \%, \mathrm{Rf}=0.2),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 3.86-3.74(\mathrm{~m}, 6 \mathrm{H})$, 3.49 (dd, $J=8.5,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.92,169.34,157.19,149.62,134.02,127.94,123.17,122.30$, $116.08,98.14,75.74,66.53,55.24,51.53,51.23,31.49,31.38,31.13,29.38,28.84$. HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 401.2435$, found 401.2330.

3-formyl-4-oxo-N-(2,4,4-trimethylpentan-2-yl)-4H-chromene-2-carboxamide

11, 28 mg , white solid, $42 \%(\mathrm{EA} / \mathrm{Hex}=25 \%, \mathrm{Rf}=0.25),{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{ddd}, J=8.7,7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.59 (td, $J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.96,175.76,156.73,155.59,146.04,135.85$, $127.52,126.42,124.62,121.18,118.24,66.59,54.62,31.66,30.72,29.35$. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 330.1700$, found 330.1705.
(Z)-3-((tert-butylamino)methylene)-N-(1-(4-chlorophenyl)cyclopropane-1-carbonyl)-N-(2,6-dimethylphenyl)-4-oxochromane-2-carboxamide

13, 139 mg , light green solid, $83 \%(\mathrm{EA} / \mathrm{Hex}=20 \%, \mathrm{Rf}=0.3),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.45(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{ddd}, J=8.2$, $7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.87(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 2 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.49$ $(\mathrm{m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{ddd}, J=9.4,7.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.52,177.01,158.74,148.86,137.36,136.73,136.61$, 135.01, 133.93, 132.67, 130.79, 128.82, 128.46, 127.97, 125.93, 123.13, 121.35, 117.04, 95.91, 79.48, 52.80, 32.33, 30.09, 18.26, 18.06, 17.71. HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{ClN}_{2} \mathrm{O}_{4}{ }^{+}(\mathrm{M}+\mathrm{H})^{+} 557.2202$, found 557.2201.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 5a

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 b}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 c}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 d}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 e}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 f}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 g}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 h}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 i}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 j}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 k}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 I}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 m}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 n}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 0}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 p}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 q}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 r}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of 5 s

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 t}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 u}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 v}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 w}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 x}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 y}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1}$

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 3}$

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) A
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: A

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level C

ABSTY03_ALERT_1_C The _exptl_absorpt_correction_type has been given as none. However values have been given for Tmin and Tmax. Remove these if an absorption correction has not been applied.
From the CIF: _exptl_absorpt_correction_T_min 0.952
From the CIF: _exptl_absorpt_correction_T_max 0.966
PLAT026_ALERT_3_C Ratio Observed / Unique Reflections (too) Low .. 46\% Check
PLAT230_ALERT_2_C Hirshfeld Test Diff for C21 --C29 5.3 s.u.

PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C9 Check
PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C26 Check

PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C1 Check
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C30 Check
PLAT334_ALERT_2_C Small Aver. Benzene C-C Dist C23 -C28
PLAT340_ALERT_3_C
Low Bond Precision on C-C Bonds

PLAT911_ALERT_3_C Missing FCF Refl Between Thmin \& STh/L= 0.595
PLAT978_ALERT_2_C Number C-C Bonds with Positive Residual Density.
1.37 Ang.
0.00597 Ang.
-1.909 Report
9 Report
0 Info

Alert level G

PLAT066_ALERT_1_G Predicted and Reported Tmin\&Tmax Range Identical PLAT073_ALERT_1_G H-atoms ref, but _hydrogen_treatment Reported as PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety constr Check

PLAT380_ALERT_4_G Incorrectly? Oriented X(sp2)-Methyl Moiety PLAT793_ALERT_4_G Model has Chirality at C20 (Centro SPGR) PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary . PLAT933_ALERT_2_G Number of OMIT Records in Embedded.res File... PLAT960_ALERT_3_G Number of Intensities with I < - 2*sig(I) ... PLAT983_ALERT_1_G The Cl-f"= 0.1603 Deviates from IT-Value =

```
O ALERT level A = Most likely a serious problem - resolve or explain
O ALERT level B = A potentially serious problem, consider carefully
12 ALERT level C = Check. Ensure it is not caused by an omission or oversight
    9 ~ A L E R T ~ l e v e l ~ G ~ = ~ G e n e r a l ~ i n f o r m a t i o n / c h e c k ~ i t ~ i s ~ n o t ~ s o m e t h i n g ~ u n e x p e c t e d ~
    5 ~ A L E R T ~ t y p e ~ 1 ~ C I F ~ c o n s t r u c t i o n / s y n t a x ~ e r r o r , ~ i n c o n s i s t e n t ~ o r ~ m i s s i n g ~ d a t a
    8 ~ A L E R T ~ t y p e ~ 2 ~ I n d i c a t o r ~ t h a t ~ t h e ~ s t r u c t u r e ~ m o d e l ~ m a y ~ b e ~ w r o n g ~ o r ~ d e f i c i e n t
    5 ~ A L E R T ~ t y p e ~ 3 ~ I n d i c a t o r ~ t h a t ~ t h e ~ s t r u c t u r e ~ q u a l i t y ~ m a y ~ b e ~ l o w ~
    ALERT type 4 Improvement, methodology, query or suggestion
    O ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 17/03/2019; check.def file version of $04 / 03 / 2019$

