Supporting Information

Palladium Nanoparticles on Reduced Graphene Oxide for Efficient and Practical Heterogeneous Activation of Aryl Chlorides in Aqueous Media *via* Microwave-Assisted Conditions

Qingxiao Zhang,^{†a} Zhan Mao,^{†a} Kaixuan Wang^a, Nam Thanh Son Phan^{*b}, and Fang Zhang^{*a}

^a The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, China

^b Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, VN 84, Vietnam.

Entry	Catalyst	Pd content (mmol/g)
1	Pd/rGO-30	0.05
2	Pd/rGO-60	0.78
3	Pd/rGO-110	0.89

Table S1. Pd content of a series of Pd/rGO composites.

Entry	Catalyst Base		Time (h)	Conversion (%)	Yield (%)
1 ^b	Pd/rGO-60	CH ₃ COONa+KOH	1.0	2.0	1.80
2°	Pd/rGO-60	CH ₃ COONa+KOH	1.0	28.3	14.9
3 ^d	Pd/rGO-60	CH ₃ COONa+KOH	1.0	40.8	30.9
4	Pd/rGO-60	CH ₃ COONa+KOH	1.0	72.3	69.5
5 ^e	Pd/rGO-60	HCOONa	1.0	62.3	45.8
6 ^f	Pd/rGO-60	CH ₃ COONa	1.0	26.5	24.5
7 ^g	Pd/rGO-60	HCOONa+KOH	1.0	77.2	44.5
8 ^h	Pd/rGO-60	HCOONa+NaOH	1.0	69.8	37.8
9 ⁱ	Pd/rGO-60	CH ₃ COONa+NaOH	1.0	56.8	45.7
10 ^k	Pd(OAc) ₂	CH ₃ COONa+KOH	20	85.4	83.6
11^{k}	Pd/rGO-60	CH ₃ COONa+KOH	2.0	10.2	5.4
12^k	Pd/rGO-60	CH ₃ COONa+KOH	20	>99	85.6
13 ^j	Pd/rGO-60	CH ₃ COONa+KOH	2.0	40.4	35.2
14 ^k	Pd/rGO-60	CH ₃ COONa+KOH	2.0	10.2	5.4
15 ^{k, 1}	Pd/rGO-60	CH ₃ COONa+KOH	1.0	29.8	22.5
16 ^k	$Pd(OAc)_2$	CH ₃ COONa+KOH	20	85.4	83.6

Table S2. Optimization of the reaction parameters in the Pd/rGO catalyzed Ullmann reaction.^a

^aReaction conditions: 1.0 mmol chlorobenzene, 0.50 mmol TBAB, 1.5 mmol CH₃COONa, 2.5 mmol KOH,, 2.0 mL solvent (V_{water} : V_{MeOH} =1/1) and 0.50 mol% Pd catalyst, 100°C (microwave heating); ^b70°C; ^c80°C; ^d90°C; ^e0.9 mmol HCOONa; ^f0.9 mmol CH₃COONa; ^g0.9 mmol HCOONa and 1.5 mmol KOH; ^h0.9 mmol HCOONa and 1.5 mmol NaOH; ⁱ0.9 mmol CH₃COONa and 1.5 mmol NaOH; ^jNo TBAB; ^kOil bath; ^l150°C.

Table S3. Catalytic performances of Pd/rGO-60 catalyst in the reaction by changing for 4'-methyl-2-biphenylcarbonitrile.^a

CI		H) ₂ Pd/rGO-	60 (0.5 mol%) ➤ ──<	NC
Entry	Time (h)	Solvent	Conversion (%)	Yield (%)
1	1	H ₂ O+EtOH	56.7	49.8
2	2	H ₂ O+EtOH	92.2	86.4
3	3	H ₂ O+EtOH	98.4	93.8
4	2	DMF	91.2	90.6

^aReaction conditions: 1.0 mmol 2-Chlorobenzonitrile, 1.2 mmol p-Tolylboronic acid, 0.50 mmol TBAB, 3.0 mmol K_3PO_4 , 2.0 mL solvent ($V_{water}/V_{MeOH}=1/1$) and 0.50 mol% Pd catalyst, 100°C (microwave heating).

Table	S4 .	Optimization	of reaction	conditions	of the	synthesis	of 2-nitro-3',4',	5'-
trifluoi	ro-1,	1'-biphenyl by	using Pd/rG	O-60 cataly	st. ^a			

	CI NO ₂ +	B(OH) ₂ F F F	Pd/G (0.5 mo	₩%) F F F	NO₂
Entry	Solvent	Base	Temperature (°C)	Conversion (%)	Yield (%)
1	H ₂ O/EtOH	K ₂ CO ₃	80	52.8	45.2
2	EG	K ₂ CO ₃	80	79.0	73.2
3	H ₂ O/THF	K_2CO_3	80	25.3	23.9
4	H ₂ O/DMF	K_2CO_3	80	Trace	Trace
5	H ₂ O/CH ₃ OH	K_2CO_3	80	Trace	Trace
6 ^b	H ₂ O/EtOH	K_2CO_3	80	54.2	53.8
7	EG	NaOH	80	22.3	4.16
8	EG	K_3PO_4	80	38.2	30.3
9	EG	Na ₂ CO ₃	80	28.9	25.1
10	EG	KF	80	40.6	37.9
11	EG	HCOONa	80	50.1	33.9
12	EG	CH ₃ COONa	80	66.9	56.5
13	EG	K_2CO_3	90	83.5	76.2
14	EG	K_2CO_3	100	92.1	89.7
15 °	EG	K ₂ CO ₃	100	91.2	85.1
16 ^d	EG	K_2CO_3	100	90.3	79.5

^aReaction Condition: 1.0 mmol 1-chloro-2-nitro-Benzene, 1.2 mmol 3, 4, 5-trifluorophenyl-boronic acid, 0.50 mol% Pd/rGO-60, 3.0 mmol K₃PO₄, 2.0 mL solvent ($V_{water}/V_{MeOH}=1/1$), 1.5 h, microwave heating; ^bPd(OAc)₂ as catalyst; ^c5.0 mmol 1-chloro-2-nitro-Benzene; ^doil bath heating, 20 h.

Figure S1. TEM image and particle size distribution of Pd/SiO_2 sample.

Figure S2. Frequency dependence of real part and imaginary part of permeability (a), and magnetic loss tangent (b) of rGO, Pd/rGO-60 and Pd/SiO₂ samples.

Figure S3. XPS spectrum of the reused Pd/rGO-60 catalyst after six cycles.

Figure S4. TEM image and particle size distribution of the reused Pd/rGO-60 catalyst after six cycles.