## Solvometallurgical recovery of cobalt from lithium-ion battery cathode material using

## deep-eutectic solvents

Nand Peeters<sup>†</sup>, Koen Binnemans<sup>†</sup>, Sofía Riaño<sup>†</sup>\*

\*Corresponding author:

Email: Sofia.Riano@kuleuven.be

Electronic Supplementary Information (ESI)

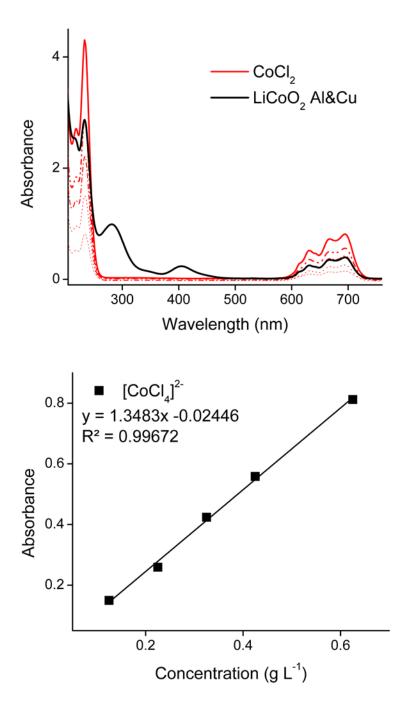



Figure S1: Quantification of the  $[CoCl_4]^{2-}$  complex in the pregnant leach solution (PLS) by UV-VIS spectroscopy. Top: spectra at different CoCl<sub>2</sub> concentrations and in the PLS. Bottom: calibration curve constructed by use of the absorption band at 694 nm. The calibration curve was recorded by dissolving CoCl<sub>2</sub> in 35 wt% H<sub>2</sub>O diluted choline chloride solution (choline chloride concentration of ca. 10 mol L<sup>-1</sup>) at concentrations between 0.125 and 0.625 g L<sup>-1</sup>. The PLS (ChCl:CA 2 : 1 + 35 wt% H<sub>2</sub>O loaded with Al(III), Co(II), Cu(II) and Li(I)) was diluted 40 times.

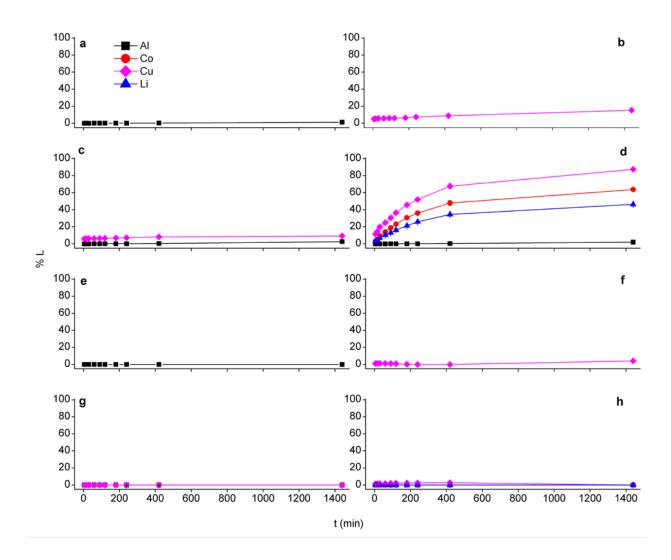



Figure S2: Comparison of leaching of LiCoO<sub>2</sub> by citric acid land choline chloride, as a function of time. Leaching parameters: S:L = 20 g L<sup>-1</sup>, 40 °C, Al:LiCoO<sub>2</sub> = 12 wt%, Cu:LiCoO<sub>2</sub> = 24 wt% at a stirring speed of 900 rpm. Conditions: (a) Al leaching by 2.8 mol L<sup>-1</sup> citric acid, (b) Cu leaching by 2.8 mol L<sup>-1</sup> citric acid, (c) Al + Cu leaching by 2.8 mol L<sup>-1</sup> citric acid (d) LiCoO<sub>2</sub> with Al + Cu leaching by 2.8 mol L<sup>-1</sup> citric acid (e).Al leaching by choline chloride 35 wt% H<sub>2</sub>O, (f) Cu by choline chloride 35 wt% H<sub>2</sub>O; (g)Al + Cu leaching by choline chloride 35 wt% H<sub>2</sub>O, (h) LiCoO<sub>2</sub> with Al + Cu leaching by choline chloride 35 wt% H<sub>2</sub>O. The citric acid concentration of 2.8 mol L<sup>-1</sup> was selected because it represents the maximum solubility in water. The citric acid concentration in the DES is ca. 3.6 mol L<sup>-1</sup>.

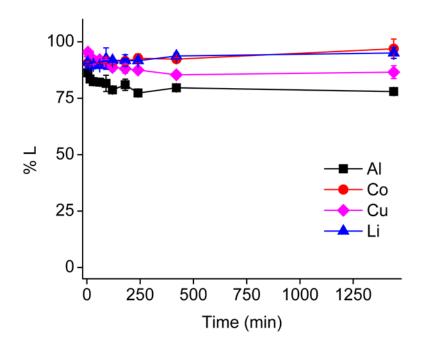



Figure S3: Leaching of LiCoO<sub>2</sub> by 3.6 mol L<sup>-1</sup> HCl solution, in the presence of Al and Cu metal. Leaching parameters: S:L = 20 g L<sup>-1</sup>, 40 °C, Al:LiCoO<sub>2</sub> = 12 wt%, Cu:LiCoO<sub>2</sub> = 24 wt% at a stirring rate of 900 rpm.

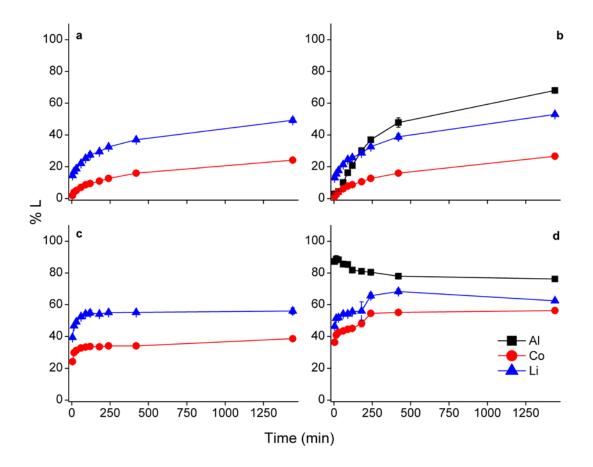



Figure S4: Comparison of leaching of LiCoO<sub>2</sub> by DES (top, a and b) and hydrochloric acid solution (bottom, c and d). Leaching parameters:  $S:L = 20 \text{ g } \text{L}^{-1}$ , 40 °C, Al:LiCoO<sub>2</sub> = 12 wt%, at a stirring rate of 900 rpm. Conditions: LiCoO<sub>2</sub> leaching by DES (a, right above), LiCoO<sub>2</sub> and Al leaching by DES (b, left above), LiCoO<sub>2</sub> leaching by HCl (c, right below), LiCoO<sub>2</sub> and Al leaching by HCl (d, left below). DES: (ChCl:CA (2 : 1 + 35 wt% H<sub>2</sub>O), concentration HCl = 1 mol L<sup>-1</sup>.

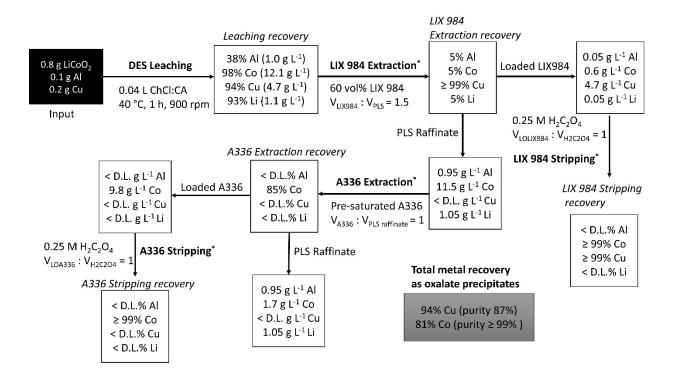



Figure S5: Overview of metal recovery during the entire process. \*All experiments were executed at RT, 2250 rpm for 0.5 h